Disentangling value, arousal and valence systems in approach-avoidance behaviors in humans using functional magnetic resonance imaging.

Dinavahi V P S Murty, Luiz Pessoa
{"title":"Disentangling value, arousal and valence systems in approach-avoidance behaviors in humans using functional magnetic resonance imaging.","authors":"Dinavahi V P S Murty, Luiz Pessoa","doi":"10.1101/2025.02.19.639143","DOIUrl":null,"url":null,"abstract":"<p><p>Appetitive and aversive stimuli evoke approach and avoidance behaviors essential for survival and well-being. While affective processing has been extensively examined in terms of arousal and valence, the extent to which value processing is independent from arousal and valence processing in naturalistic contexts remains unclear. We addressed this gap using a naturalistic approach-avoidance task. Ninety-one human participants underwent functional MRI scanning while engaging in approach-avoidance tasks involving two levels of threat (mild or aversive electrical stimulation) and reward (monetary gains). We estimated effect sizes (Cohen's D) across subjects for increasing levels of threat, reward and arousal; for valence (negative vs positive); and for valence-arousal interactions. Effect sizes for threat and reward were strongly positively correlated across brain voxels (r = 0.82), suggesting a strong influence of a shared factor. Spatial independent component analysis decomposed these effect sizes into two independent latent factors, one that represented arousal processing and another that exhibited characteristics of value processing. Importantly, we predicted that valence-arousal interaction effects would increase with latent value effects across voxels, since both valence and arousal contribute to our overall valuation process. We indeed found this to be true. Furthermore, sizable latent value effects were observed in dorsolateral prefrontal cortex, fusiform gyrus and middle temporal gyrus, areas also involved in attention and executive control. Thus, our findings revealed a value system in the human brain that could operate independently of arousal and valence systems during naturalistic approach-avoidance behaviors, providing new insights into the neural mechanisms of affective processing.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870550/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.19.639143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Appetitive and aversive stimuli evoke approach and avoidance behaviors essential for survival and well-being. While affective processing has been extensively examined in terms of arousal and valence, the extent to which value processing is independent from arousal and valence processing in naturalistic contexts remains unclear. We addressed this gap using a naturalistic approach-avoidance task. Ninety-one human participants underwent functional MRI scanning while engaging in approach-avoidance tasks involving two levels of threat (mild or aversive electrical stimulation) and reward (monetary gains). We estimated effect sizes (Cohen's D) across subjects for increasing levels of threat, reward and arousal; for valence (negative vs positive); and for valence-arousal interactions. Effect sizes for threat and reward were strongly positively correlated across brain voxels (r = 0.82), suggesting a strong influence of a shared factor. Spatial independent component analysis decomposed these effect sizes into two independent latent factors, one that represented arousal processing and another that exhibited characteristics of value processing. Importantly, we predicted that valence-arousal interaction effects would increase with latent value effects across voxels, since both valence and arousal contribute to our overall valuation process. We indeed found this to be true. Furthermore, sizable latent value effects were observed in dorsolateral prefrontal cortex, fusiform gyrus and middle temporal gyrus, areas also involved in attention and executive control. Thus, our findings revealed a value system in the human brain that could operate independently of arousal and valence systems during naturalistic approach-avoidance behaviors, providing new insights into the neural mechanisms of affective processing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信