PolyGraph: a Graph-based Method for Floorplan Reconstruction from 3D Scans.

Qian Sun, Chenrong Fang, Shuang Liu, Yidan Sun, Yu Shang, Ying He
{"title":"PolyGraph: a Graph-based Method for Floorplan Reconstruction from 3D Scans.","authors":"Qian Sun, Chenrong Fang, Shuang Liu, Yidan Sun, Yu Shang, Ying He","doi":"10.1109/TVCG.2025.3544769","DOIUrl":null,"url":null,"abstract":"<p><p>The task of reconstructing indoor floorplans has become an increasingly popular subject, offering substantial benefits across various applications such as interior design, virtual reality, and robotics. Despite the growing interest, existing approaches frequently encounter challenges due to high computational costs and sensitivity to errors in primitive detection. In this paper, we introduce PolyGraph, a new computational framework that combines a deep-learning based primitive detection network with an optimization-based reconstruction algorithm to facilitate high-quality reconstruction results. Specifically, we develop a novel guided wall point primitive estimation network capable of generating dense samples along wall boundaries. This network not only retains structural detail but also shows improved robustness in the detection phase. Then, PolyGraph utilizes wall points to establish a graph-based representation, formulating indoor floorplan reconstruction as a subgraph optimization problem. This approach significantly reduces the search space comparing to existing pixel-level optimization approaches. By utilizing \"structural weight\", we seamlessly integrate the structural information of walls and rooms into graph representations, ensuring high-quality reconstruction results. Experimental results demonstrate PolyGraph's effectiveness and its advantages compared to other optimization-based approaches, showcasing its computational efficiency, and its ability to preserve structural integrity and capture fine details, as quantified by the structure metrics. The source code is publicly available at https://github.com/Fern327/PolyGraph.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3544769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The task of reconstructing indoor floorplans has become an increasingly popular subject, offering substantial benefits across various applications such as interior design, virtual reality, and robotics. Despite the growing interest, existing approaches frequently encounter challenges due to high computational costs and sensitivity to errors in primitive detection. In this paper, we introduce PolyGraph, a new computational framework that combines a deep-learning based primitive detection network with an optimization-based reconstruction algorithm to facilitate high-quality reconstruction results. Specifically, we develop a novel guided wall point primitive estimation network capable of generating dense samples along wall boundaries. This network not only retains structural detail but also shows improved robustness in the detection phase. Then, PolyGraph utilizes wall points to establish a graph-based representation, formulating indoor floorplan reconstruction as a subgraph optimization problem. This approach significantly reduces the search space comparing to existing pixel-level optimization approaches. By utilizing "structural weight", we seamlessly integrate the structural information of walls and rooms into graph representations, ensuring high-quality reconstruction results. Experimental results demonstrate PolyGraph's effectiveness and its advantages compared to other optimization-based approaches, showcasing its computational efficiency, and its ability to preserve structural integrity and capture fine details, as quantified by the structure metrics. The source code is publicly available at https://github.com/Fern327/PolyGraph.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信