ZigzagNetVis: Suggesting temporal resolutions for graph visualization using zigzag persistence.

Raphael Tinarrage, Jean R Ponciano, Claudio D G Linhares, Agma J M Traina, Jorge Poco
{"title":"ZigzagNetVis: Suggesting temporal resolutions for graph visualization using zigzag persistence.","authors":"Raphael Tinarrage, Jean R Ponciano, Claudio D G Linhares, Agma J M Traina, Jorge Poco","doi":"10.1109/TVCG.2025.3528197","DOIUrl":null,"url":null,"abstract":"<p><p>Temporal graphs are commonly used to represent complex systems and track the evolution of their constituents over time. Visualizing these graphs is crucial as it allows one to quickly identify anomalies, trends, patterns, and other properties that facilitate better decision-making. In this context, selecting an appropriate temporal resolution is essential for constructing and visually analyzing the layout. The choice of resolution is particularly important, especially when dealing with temporally sparse graphs. In such cases, changing the temporal resolution by grouping events (i.e., edges) from consecutive timestamps - a technique known as timeslicing - can aid in the analysis and reveal patterns that might not be discernible otherwise. However, selecting an appropriate temporal resolution is a challenging task. In this paper, we propose ZigzagNetVis, a methodology that suggests temporal resolutions potentially relevant for analyzing a given graph, i.e., resolutions that lead to substantial topological changes in the graph structure. ZigzagNetVis achieves this by leveraging zigzag persistent homology, a well-established technique from Topological Data Analysis (TDA). To improve visual graph analysis, ZigzagNetVis incorporates the colored barcode, a novel timeline-based visualization inspired by persistence barcodes commonly used in TDA. We also contribute with a web-based system prototype that implements suggestion methodology and visualization tools. Finally, we demonstrate the usefulness and effectiveness of ZigzagNetVis through a usage scenario, a user study with 27 participants, and a detailed quantitative evaluation.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3528197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Temporal graphs are commonly used to represent complex systems and track the evolution of their constituents over time. Visualizing these graphs is crucial as it allows one to quickly identify anomalies, trends, patterns, and other properties that facilitate better decision-making. In this context, selecting an appropriate temporal resolution is essential for constructing and visually analyzing the layout. The choice of resolution is particularly important, especially when dealing with temporally sparse graphs. In such cases, changing the temporal resolution by grouping events (i.e., edges) from consecutive timestamps - a technique known as timeslicing - can aid in the analysis and reveal patterns that might not be discernible otherwise. However, selecting an appropriate temporal resolution is a challenging task. In this paper, we propose ZigzagNetVis, a methodology that suggests temporal resolutions potentially relevant for analyzing a given graph, i.e., resolutions that lead to substantial topological changes in the graph structure. ZigzagNetVis achieves this by leveraging zigzag persistent homology, a well-established technique from Topological Data Analysis (TDA). To improve visual graph analysis, ZigzagNetVis incorporates the colored barcode, a novel timeline-based visualization inspired by persistence barcodes commonly used in TDA. We also contribute with a web-based system prototype that implements suggestion methodology and visualization tools. Finally, we demonstrate the usefulness and effectiveness of ZigzagNetVis through a usage scenario, a user study with 27 participants, and a detailed quantitative evaluation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信