Instability of a fluctuating biomimetic membrane driven by an applied uniform DC electric field.

ArXiv Pub Date : 2025-02-18
Zongxin Yu, Shuozhen Zhao, Michael J Miksis, Petia M Vlahovska
{"title":"Instability of a fluctuating biomimetic membrane driven by an applied uniform DC electric field.","authors":"Zongxin Yu, Shuozhen Zhao, Michael J Miksis, Petia M Vlahovska","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The linear stability of a lipid membrane under a DC electric field, applied perpendicularly to the interface, is investigated in the electrokinetic framework, taking account to the dynamics of the Debye layers formed near the membrane. The perturbed charge in the Debye layer redistributes and destabilizes the membrane via electrical surface stress interior and exterior to the membrane. The instability is suppressed as the difference in the electrolyte concentration of the solutions separated by the membrane increases, due to a weakened base state electric field near the membrane. This result contrasts with the destabilizing effect predicted using the leaky dielectric model in cases of asymmetric conductivity. We attribute this difference to the varying assumptions about the perturbation amplitude relative to the Debye length, which result in different regimes of validity for the linear stability analysis within these two frameworks.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875285/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The linear stability of a lipid membrane under a DC electric field, applied perpendicularly to the interface, is investigated in the electrokinetic framework, taking account to the dynamics of the Debye layers formed near the membrane. The perturbed charge in the Debye layer redistributes and destabilizes the membrane via electrical surface stress interior and exterior to the membrane. The instability is suppressed as the difference in the electrolyte concentration of the solutions separated by the membrane increases, due to a weakened base state electric field near the membrane. This result contrasts with the destabilizing effect predicted using the leaky dielectric model in cases of asymmetric conductivity. We attribute this difference to the varying assumptions about the perturbation amplitude relative to the Debye length, which result in different regimes of validity for the linear stability analysis within these two frameworks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信