Identification of genetic loci for growth and stem form traits in hybrid Liriodendron via a genome-wide association study.

Forestry research Pub Date : 2025-01-22 eCollection Date: 2025-01-01 DOI:10.48130/forres-0025-0001
Fengchao Zhang, Xiao Liu, Hui Xia, Hainan Wu, Yaxian Zong, Huogen Li
{"title":"Identification of genetic loci for growth and stem form traits in hybrid <i>Liriodendron</i> via a genome-wide association study.","authors":"Fengchao Zhang, Xiao Liu, Hui Xia, Hainan Wu, Yaxian Zong, Huogen Li","doi":"10.48130/forres-0025-0001","DOIUrl":null,"url":null,"abstract":"<p><p>A key objective of forest tree breeding programs is to enhance traits related to growth and stem form, to cultivate plantations that exhibit rapid growth, straight trunks with minimal taper, and superior wood quality to meet the demands of modern timber production. Notably, <i>Liriodendron</i> species exhibit notable heterosis in interspecies hybrids, with hybrid <i>Liriodendron</i> displaying rapid growth rates, straight trunks, and wide adaptability. However, the genetic architecture underlying growth and stem form traits remains unclear, hindering the progress of genetic improvement efforts. Genome-wide association study (GWAS) emerges as an effective approach for identifying target genes and clarifying genetic architectures. In this study, a comprehensive analysis was conducted using an artificial population of 233 hybrid progeny derived from 25 hybrid combinations and resequenced to obtain genome-wide single nucleotide polymorphism (SNP) and insertion and deletion (InDel) variants. After filtering, a total of 192,972 SNP loci and 60,666 InDel loci were obtained, which were subsequently analyzed for associations using the R package GAPIT. We identified 97 significant SNP loci and 58 significant InDel loci (-Log<sub>10</sub>(P) ≥ 4.50), respectively, culminating in the identification of 161 candidate genes. The functions of these candidate genes were annotated, revealing potential associations between <i>Lchi_2g03172</i> and <i>Lchi_10g19986</i> genes with the growth of hybrid <i>Liriodendron</i>, and highlighting the potential influence of the <i>Lchi_16g30522</i> gene on the growth and branching of hybrid <i>Liriodendron</i>. Overall, this study serves as a foundational step towards unraveling the genetic architecture underpinning growth and stem form in <i>Liriodendron</i> plants.</p>","PeriodicalId":520285,"journal":{"name":"Forestry research","volume":"5 ","pages":"e001"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870303/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forestry research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48130/forres-0025-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A key objective of forest tree breeding programs is to enhance traits related to growth and stem form, to cultivate plantations that exhibit rapid growth, straight trunks with minimal taper, and superior wood quality to meet the demands of modern timber production. Notably, Liriodendron species exhibit notable heterosis in interspecies hybrids, with hybrid Liriodendron displaying rapid growth rates, straight trunks, and wide adaptability. However, the genetic architecture underlying growth and stem form traits remains unclear, hindering the progress of genetic improvement efforts. Genome-wide association study (GWAS) emerges as an effective approach for identifying target genes and clarifying genetic architectures. In this study, a comprehensive analysis was conducted using an artificial population of 233 hybrid progeny derived from 25 hybrid combinations and resequenced to obtain genome-wide single nucleotide polymorphism (SNP) and insertion and deletion (InDel) variants. After filtering, a total of 192,972 SNP loci and 60,666 InDel loci were obtained, which were subsequently analyzed for associations using the R package GAPIT. We identified 97 significant SNP loci and 58 significant InDel loci (-Log10(P) ≥ 4.50), respectively, culminating in the identification of 161 candidate genes. The functions of these candidate genes were annotated, revealing potential associations between Lchi_2g03172 and Lchi_10g19986 genes with the growth of hybrid Liriodendron, and highlighting the potential influence of the Lchi_16g30522 gene on the growth and branching of hybrid Liriodendron. Overall, this study serves as a foundational step towards unraveling the genetic architecture underpinning growth and stem form in Liriodendron plants.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信