From FAIR to CURE: Guidelines for Computational Models of Biological Systems.

ArXiv Pub Date : 2025-02-21
Herbert M Sauro, Eran Agmon, Michael L Blinov, John H Gennari, Joe Hellerstein, Adel Heydarabadipour, Peter Hunter, Bartholomew E Jardine, Elebeoba May, David P Nickerson, Lucian P Smith, Gary D Bader, Frank Bergmann, Patrick M Boyle, Andreas Dräger, James R Faeder, Song Feng, Juliana Freire, Fabian Fröhlich, James A Glazier, Thomas E Gorochowski, Tomas Helikar, Stefan Hoops, Princess Imoukhuede, Sarah M Keating, Matthias Konig, Reinhard Laubenbacher, Leslie M Loew, Carlos F Lopez, William W Lytton, Andrew McCulloch, Pedro Mendes, Chris J Myers, Jerry G Myers, Lealem Mulugeta, Anna Niarakis, David D van Niekerk, Brett G Olivier, Alexander A Patrie, Ellen M Quardokus, Nicole Radde, Johann M Rohwer, Sven Sahle, James C Schaff, T J Sego, Janis Shin, Jacky L Snoep, Rajanikanth Vadigepalli, H Steve Wiley, Dagmar Waltemath, Ion Moraru
{"title":"From FAIR to CURE: Guidelines for Computational Models of Biological Systems.","authors":"Herbert M Sauro, Eran Agmon, Michael L Blinov, John H Gennari, Joe Hellerstein, Adel Heydarabadipour, Peter Hunter, Bartholomew E Jardine, Elebeoba May, David P Nickerson, Lucian P Smith, Gary D Bader, Frank Bergmann, Patrick M Boyle, Andreas Dräger, James R Faeder, Song Feng, Juliana Freire, Fabian Fröhlich, James A Glazier, Thomas E Gorochowski, Tomas Helikar, Stefan Hoops, Princess Imoukhuede, Sarah M Keating, Matthias Konig, Reinhard Laubenbacher, Leslie M Loew, Carlos F Lopez, William W Lytton, Andrew McCulloch, Pedro Mendes, Chris J Myers, Jerry G Myers, Lealem Mulugeta, Anna Niarakis, David D van Niekerk, Brett G Olivier, Alexander A Patrie, Ellen M Quardokus, Nicole Radde, Johann M Rohwer, Sven Sahle, James C Schaff, T J Sego, Janis Shin, Jacky L Snoep, Rajanikanth Vadigepalli, H Steve Wiley, Dagmar Waltemath, Ion Moraru","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Guidelines for managing scientific data have been established under the FAIR principles requiring that data be Findable, Accessible, Interoperable, and Reusable. In many scientific disciplines, especially computational biology, both data and <i>models</i> are key to progress. For this reason, and recognizing that such models are a very special type of \"data\", we argue that computational models, especially mechanistic models prevalent in medicine, physiology and systems biology, deserve a complementary set of guidelines. We propose the CURE principles, emphasizing that models should be Credible, Understandable, Reproducible, and Extensible. We delve into each principle, discussing verification, validation, and uncertainty quantification for model credibility; the clarity of model descriptions and annotations for understandability; adherence to standards and open science practices for reproducibility; and the use of open standards and modular code for extensibility and reuse. We outline recommended and baseline requirements for each aspect of CURE, aiming to enhance the impact and trustworthiness of computational models, particularly in biomedical applications where credibility is paramount. Our perspective underscores the need for a more disciplined approach to modeling, aligning with emerging trends such as Digital Twins and emphasizing the importance of data and modeling standards for interoperability and reuse. Finally, we emphasize that given the non-trivial effort required to implement the guidelines, the community moves to automate as many of the guidelines as possible.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875277/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Guidelines for managing scientific data have been established under the FAIR principles requiring that data be Findable, Accessible, Interoperable, and Reusable. In many scientific disciplines, especially computational biology, both data and models are key to progress. For this reason, and recognizing that such models are a very special type of "data", we argue that computational models, especially mechanistic models prevalent in medicine, physiology and systems biology, deserve a complementary set of guidelines. We propose the CURE principles, emphasizing that models should be Credible, Understandable, Reproducible, and Extensible. We delve into each principle, discussing verification, validation, and uncertainty quantification for model credibility; the clarity of model descriptions and annotations for understandability; adherence to standards and open science practices for reproducibility; and the use of open standards and modular code for extensibility and reuse. We outline recommended and baseline requirements for each aspect of CURE, aiming to enhance the impact and trustworthiness of computational models, particularly in biomedical applications where credibility is paramount. Our perspective underscores the need for a more disciplined approach to modeling, aligning with emerging trends such as Digital Twins and emphasizing the importance of data and modeling standards for interoperability and reuse. Finally, we emphasize that given the non-trivial effort required to implement the guidelines, the community moves to automate as many of the guidelines as possible.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信