HeteroEEG: A Dual-Branch Spatial-Spectral-Temporal Heterogeneous Graph Network for EEG Classification.

Zanhao Fu, Huaiyu Zhu, Ruohong Huan, Yi Zhang, Shuohui Chen, Yun Pan
{"title":"HeteroEEG: A Dual-Branch Spatial-Spectral-Temporal Heterogeneous Graph Network for EEG Classification.","authors":"Zanhao Fu, Huaiyu Zhu, Ruohong Huan, Yi Zhang, Shuohui Chen, Yun Pan","doi":"10.1109/EMBC53108.2024.10781679","DOIUrl":null,"url":null,"abstract":"<p><p>Given the non-Euclidean topology inherent in electroencephalogram (EEG) electrode configurations, graph-based approaches, particularly graph neural networks, have shown notable success across diverse EEG classification tasks. However, since the cerebral cortex lobes function individually and/or collaboratively across diverse tasks, there exist substantial differences between intra-lobe and inter-lobe brain intrinsic functional connectivity. Existing graph networks for EEG classification are based on homogeneous graphs, yet the nature of the cerebral cortex aligns more closely with a heterogeneous graph structure. To this end, we propose HeteroEEG for EEG classification, which to the best of our knowledge is the first to reframe the challenge of exploring EEG spatial information, especially decoupling different types of brain lobes and functional connections, as heterogeneous graph reasoning. Specifically, HeteroEEG is designed to be a dual-branch network aware of spatial, spectral, and temporal EEG features. Experimental results justify the superiority of HeteroEEG in pain and emotion recognition compared with other state-of-the-art studies. The heterogeneous graph construction of HeteroEEG may shed light on future graph-based EEG classification network design.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10781679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given the non-Euclidean topology inherent in electroencephalogram (EEG) electrode configurations, graph-based approaches, particularly graph neural networks, have shown notable success across diverse EEG classification tasks. However, since the cerebral cortex lobes function individually and/or collaboratively across diverse tasks, there exist substantial differences between intra-lobe and inter-lobe brain intrinsic functional connectivity. Existing graph networks for EEG classification are based on homogeneous graphs, yet the nature of the cerebral cortex aligns more closely with a heterogeneous graph structure. To this end, we propose HeteroEEG for EEG classification, which to the best of our knowledge is the first to reframe the challenge of exploring EEG spatial information, especially decoupling different types of brain lobes and functional connections, as heterogeneous graph reasoning. Specifically, HeteroEEG is designed to be a dual-branch network aware of spatial, spectral, and temporal EEG features. Experimental results justify the superiority of HeteroEEG in pain and emotion recognition compared with other state-of-the-art studies. The heterogeneous graph construction of HeteroEEG may shed light on future graph-based EEG classification network design.

异质脑电图:一种用于脑电图分类的双分支空间-频谱-时间异质图网络。
鉴于脑电图(EEG)电极配置中固有的非欧几里得拓扑结构,基于图的方法,特别是图神经网络,在不同的EEG分类任务中取得了显著的成功。然而,由于大脑皮层叶在不同的任务中单独或协同发挥作用,因此叶内和叶间的大脑内在功能连接存在实质性差异。现有的脑电图分类图网络是基于同质图,但大脑皮层的性质更接近于异质图结构。为此,我们提出了异质脑电图(HeteroEEG)来进行脑电信号分类,据我们所知,这是第一个将探索脑电信号空间信息的挑战重新定义为异构图推理,特别是解耦不同类型的脑叶和功能连接。具体来说,HeteroEEG被设计成一个双分支网络,能够感知EEG的空间、频谱和时间特征。实验结果证明了异脑电图在疼痛和情绪识别方面的优越性。异质脑电信号的异构图构建对未来基于图的脑电信号分类网络设计具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信