Sankaran Venkatachalam, Sowmya Ramaswamy Krishnan, Ramesh Pandian, Yasien Sayed, M Michael Gromiha
{"title":"Structural Implications of HIV-1 Protease Subtype C Bound to Darunavir: A Molecular Dynamics Study.","authors":"Sankaran Venkatachalam, Sowmya Ramaswamy Krishnan, Ramesh Pandian, Yasien Sayed, M Michael Gromiha","doi":"10.1002/prot.26817","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, Human Immunodeficiency Virus (HIV) remains a significant global health challenge, with millions affected worldwide, particularly in Africa and sub-Saharan regions. Despite advances in antiretroviral therapies, the genetic variability of HIV, including different subtypes and drug-resistant strains, poses persistent obstacles in the development of universally effective treatments. This study focuses on the dynamics of HIV protease, a key enzyme in viral replication and maturation, particularly targeting subtype C and its double insertion (HL) variant L38HL, in the context of interaction with Darunavir (DRV), a second-generation nonpeptidic protease inhibitor approved by the FDA in 2006. Through molecular dynamics simulations, structural analyses, dynamic cross-correlation analyses, and binding energy calculations, we investigated differences in the binding of DRV to WT and L38HL HIV-1 protease. The findings highlight that the double insertion at the hinge induces variation in Φ and Ψ angles, leading to increased residue fluctuations, solvent-accessible surface area (SASA), and radius of gyration (R<sub>g</sub>). This alters the overall structural compactness and the hydrophobic core crucial for drug binding. Subtle structural changes result in the loss of hydrogen bond interactions, reducing the binding energy of L38HL HIV-1 protease subtype C bound to DRV, leading to drug resistance.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":"1426-1435"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26817","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, Human Immunodeficiency Virus (HIV) remains a significant global health challenge, with millions affected worldwide, particularly in Africa and sub-Saharan regions. Despite advances in antiretroviral therapies, the genetic variability of HIV, including different subtypes and drug-resistant strains, poses persistent obstacles in the development of universally effective treatments. This study focuses on the dynamics of HIV protease, a key enzyme in viral replication and maturation, particularly targeting subtype C and its double insertion (HL) variant L38HL, in the context of interaction with Darunavir (DRV), a second-generation nonpeptidic protease inhibitor approved by the FDA in 2006. Through molecular dynamics simulations, structural analyses, dynamic cross-correlation analyses, and binding energy calculations, we investigated differences in the binding of DRV to WT and L38HL HIV-1 protease. The findings highlight that the double insertion at the hinge induces variation in Φ and Ψ angles, leading to increased residue fluctuations, solvent-accessible surface area (SASA), and radius of gyration (Rg). This alters the overall structural compactness and the hydrophobic core crucial for drug binding. Subtle structural changes result in the loss of hydrogen bond interactions, reducing the binding energy of L38HL HIV-1 protease subtype C bound to DRV, leading to drug resistance.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.