{"title":"SARS-CoV-2 Mpro Dihedral Angles Reveal Allosteric Signaling.","authors":"Daniel Evans, Samreen Sheraz, Albert Y Lau","doi":"10.1002/prot.26814","DOIUrl":null,"url":null,"abstract":"<p><p>In allosteric proteins, identifying the pathways that signals take from allosteric ligand-binding sites to enzyme active sites or binding pockets and interfaces remains challenging. This avenue of research is motivated by the goals of understanding particular macromolecular systems of interest and creating general methods for their study. An especially important protein that is the subject of many investigations in allostery is the SARS-CoV-2 main protease (Mpro), which is necessary for coronaviral replication. It is both an attractive drug target and, due to intense interest in it for the development of pharmaceutical compounds, a gauge of the state of the art approaches in studying protein inhibition. Here we develop a computational method for characterizing protein allostery and use it to study Mpro. We propose a role of the protein's C-terminal tail in allosteric modulation and warn of unintuitive traps that can plague studies of the role of protein dihedral angles in transmitting allosteric signals.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26814","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In allosteric proteins, identifying the pathways that signals take from allosteric ligand-binding sites to enzyme active sites or binding pockets and interfaces remains challenging. This avenue of research is motivated by the goals of understanding particular macromolecular systems of interest and creating general methods for their study. An especially important protein that is the subject of many investigations in allostery is the SARS-CoV-2 main protease (Mpro), which is necessary for coronaviral replication. It is both an attractive drug target and, due to intense interest in it for the development of pharmaceutical compounds, a gauge of the state of the art approaches in studying protein inhibition. Here we develop a computational method for characterizing protein allostery and use it to study Mpro. We propose a role of the protein's C-terminal tail in allosteric modulation and warn of unintuitive traps that can plague studies of the role of protein dihedral angles in transmitting allosteric signals.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.