Puneet Rawat, R Prabakaran, Divya Sharma, Vasanth Mandala, Victor Greiff, Sandeep Kumar, M Michael Gromiha
{"title":"Investigating Local Sequence-Structural Attributes of Amyloidogenic Light Chain Variable Domains.","authors":"Puneet Rawat, R Prabakaran, Divya Sharma, Vasanth Mandala, Victor Greiff, Sandeep Kumar, M Michael Gromiha","doi":"10.1002/prot.26815","DOIUrl":null,"url":null,"abstract":"<p><p>Light chain amyloidosis is a medical condition characterized by the aggregation of misfolded antibody light chains into insoluble amyloid fibrils in the target organs, causing organ dysfunction, organ failure, and death. Despite extensive research to understand the factors contributing to amyloidogenesis, accurately predicting whether a given protein will form amyloids under specific conditions remains a formidable challenge. In this study, we have conducted a comprehensive analysis to understand the amyloidogenic tendencies within a dataset containing 1828 (348 amyloidogenic and 1480 non-amyloidogenic) antibody light chain variable region (V<sub>L</sub>) sequences obtained from the AL-Base database. Physicochemical and structural features often associated with protein aggregation, such as net charge, isoelectric point (pI), and solvent-exposed hydrophobic regions did not reveal a consistent association with the aggregation capability of the antibody light chains. However, the solvent-exposed aggregation-prone regions (APRs) occur with higher frequencies among the amyloidogenic light chains when compared with the non-amyloidogenic ones, with the difference ranging from 2% to 15% at various relative solvent-accessible surface area (rASA) cutoffs. We have, for the first time, identified structural gatekeeping residues around the APRs and assessed their impact on the amyloidogenicity of the antibody light chains. The non-amyloidogenic light chains contain these structural gatekeeper residues vicinal to their APRs more often than the amyloidogenic ones. We observed that the rASA cutoff of 35% is optimal for identifying the surface-exposed APRs, and a 4 Å distance cutoff from the APR motif(s) is optimal for identifying the structural gatekeeper residues. Moreover, lambda light chains were found to contain solvent-exposed APRs more often and surrounded by fewer gatekeepers, rendering them more susceptible to aggregation. The insights gained from this report have significant implications for understanding the molecular origins of light-chain amyloidosis in humans and the design of aggregation-resistant therapeutic antibodies.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26815","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Light chain amyloidosis is a medical condition characterized by the aggregation of misfolded antibody light chains into insoluble amyloid fibrils in the target organs, causing organ dysfunction, organ failure, and death. Despite extensive research to understand the factors contributing to amyloidogenesis, accurately predicting whether a given protein will form amyloids under specific conditions remains a formidable challenge. In this study, we have conducted a comprehensive analysis to understand the amyloidogenic tendencies within a dataset containing 1828 (348 amyloidogenic and 1480 non-amyloidogenic) antibody light chain variable region (VL) sequences obtained from the AL-Base database. Physicochemical and structural features often associated with protein aggregation, such as net charge, isoelectric point (pI), and solvent-exposed hydrophobic regions did not reveal a consistent association with the aggregation capability of the antibody light chains. However, the solvent-exposed aggregation-prone regions (APRs) occur with higher frequencies among the amyloidogenic light chains when compared with the non-amyloidogenic ones, with the difference ranging from 2% to 15% at various relative solvent-accessible surface area (rASA) cutoffs. We have, for the first time, identified structural gatekeeping residues around the APRs and assessed their impact on the amyloidogenicity of the antibody light chains. The non-amyloidogenic light chains contain these structural gatekeeper residues vicinal to their APRs more often than the amyloidogenic ones. We observed that the rASA cutoff of 35% is optimal for identifying the surface-exposed APRs, and a 4 Å distance cutoff from the APR motif(s) is optimal for identifying the structural gatekeeper residues. Moreover, lambda light chains were found to contain solvent-exposed APRs more often and surrounded by fewer gatekeepers, rendering them more susceptible to aggregation. The insights gained from this report have significant implications for understanding the molecular origins of light-chain amyloidosis in humans and the design of aggregation-resistant therapeutic antibodies.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.