{"title":"Prioritizing the location of vaccination centres during the COVID-19 pandemic by bike in the Netherlands.","authors":"Adel Al-Huraibi, Sherif Amer, Justine Blanford","doi":"10.4081/gh.2025.1293","DOIUrl":null,"url":null,"abstract":"<p><p>Once a vaccine against COVID-19 had been developed, distribution strategies were needed to vaccinate large numbers of the population as efficiently as possible. In this study we explored the geographical accessibility of vaccination centres and examined their optimal location. To achieve this, we used open-source data. For the analysis we assessed the centre-to-population ratio served to assess inequalities and examined the optimal number and location of centres needed to serve 50%, 70% and 85% of the population, while ensuring physical accessibility using a common mode of transportation, the bicycle. The Location Set Covering Problem (LSCP) model was used to determine the lowest number of vaccination centres needed and assess where these should be located for each Municipal Health Service (GGD) region in The Netherlands. Our analysis identified an unequal distribution of health centres by GGD region, with a primary concentration of vaccination locations in the central region of the Netherlands. GGD Region Noord en Oost Gelderland (N=34), Utrecht (N=29) and Hollands-Midden (N=26) had the highest numbers, while the lowest were found in West-Brabant (N=1), Brabant-Zuidoost (N=2), with Kennemerland, Hollands-Noorden, Groningen and Flevoland (N=3) each. The centre-to-population ratio ranged from 1 centre serving 22,000 people (Noord en Oost Gelderland) to 1 centre serving 672,000 people (West Brabant region). The location-allocation analysis identified several regions that would benefit by adding more centres, most of which would serve densely populated regions previously neglected by the existing vaccination strategy. The number of centres needed ranged from 110 to 322 to achieve 50% and 85% population coverage respectively. In conclusion, location-allocation models coupled with Geographic Information Systems (GIS) can aid decision-making efforts during mass vaccination efforts. To increase effectiveness, a nuanced distribution approach considering accessibility and coverage would be useful. The methodology presented here is valuable for aiding decisionmakers in providing optimized locally adapted crucial health services accessible for the population, such as vaccination centres.</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geospatial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4081/gh.2025.1293","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Once a vaccine against COVID-19 had been developed, distribution strategies were needed to vaccinate large numbers of the population as efficiently as possible. In this study we explored the geographical accessibility of vaccination centres and examined their optimal location. To achieve this, we used open-source data. For the analysis we assessed the centre-to-population ratio served to assess inequalities and examined the optimal number and location of centres needed to serve 50%, 70% and 85% of the population, while ensuring physical accessibility using a common mode of transportation, the bicycle. The Location Set Covering Problem (LSCP) model was used to determine the lowest number of vaccination centres needed and assess where these should be located for each Municipal Health Service (GGD) region in The Netherlands. Our analysis identified an unequal distribution of health centres by GGD region, with a primary concentration of vaccination locations in the central region of the Netherlands. GGD Region Noord en Oost Gelderland (N=34), Utrecht (N=29) and Hollands-Midden (N=26) had the highest numbers, while the lowest were found in West-Brabant (N=1), Brabant-Zuidoost (N=2), with Kennemerland, Hollands-Noorden, Groningen and Flevoland (N=3) each. The centre-to-population ratio ranged from 1 centre serving 22,000 people (Noord en Oost Gelderland) to 1 centre serving 672,000 people (West Brabant region). The location-allocation analysis identified several regions that would benefit by adding more centres, most of which would serve densely populated regions previously neglected by the existing vaccination strategy. The number of centres needed ranged from 110 to 322 to achieve 50% and 85% population coverage respectively. In conclusion, location-allocation models coupled with Geographic Information Systems (GIS) can aid decision-making efforts during mass vaccination efforts. To increase effectiveness, a nuanced distribution approach considering accessibility and coverage would be useful. The methodology presented here is valuable for aiding decisionmakers in providing optimized locally adapted crucial health services accessible for the population, such as vaccination centres.
期刊介绍:
The focus of the journal is on all aspects of the application of geographical information systems, remote sensing, global positioning systems, spatial statistics and other geospatial tools in human and veterinary health. The journal publishes two issues per year.