Lysine 2-hydroxyisobutyrylation of HXK1 alters energy metabolism and KATP channel function in the atrium from patients with atrial fibrillation.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY
Hai-Tao Hou, Xiang-Chong Wang, Huan-Xin Chen, Jun Wang, Qin Yang, Guo-Wei He
{"title":"Lysine 2-hydroxyisobutyrylation of HXK1 alters energy metabolism and K<sub>ATP</sub> channel function in the atrium from patients with atrial fibrillation.","authors":"Hai-Tao Hou, Xiang-Chong Wang, Huan-Xin Chen, Jun Wang, Qin Yang, Guo-Wei He","doi":"10.1186/s12964-025-02108-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Atrial fibrillation (AF) is the most common form of arrhythmia and is a growing clinical problem. Post-translational modifications (PTMs) constitute crucial epigenetic mechanisms but modification of lysine 2-hydroxyisobutyrylation (K<sub>hib</sub>) in AF is still unknown. This study aimed to investigate the role and mechanism of K<sub>hib</sub> in AF.</p><p><strong>Methods: </strong>PTM proteomics was applied in the human atrial tissue from AF and sinus rhythm patients with heart valve disease during cardiac surgery to identify the K<sub>hib</sub> sites. The functional changes of differential modification sites were further validated at the cellular level. Cellular electrophysiology was performed to record the ion channel current and action potential duration (APD).</p><p><strong>Results: </strong>The modification of 124 K<sub>hib</sub> sites in 35 proteins and 67 sites in 48 proteins exhibited significant increase or decrease in AF compared to sinus rhythm. Ten K<sub>hib</sub> sites were included in energy metabolism-related signaling pathways (HXK1, TPIS, PGM1, and ODPX in glycolysis; MDHC and IDH3A in tricarboxylic acid cycle; NDUS2, ETFB, ADT3, and ATPB in oxidative respiratory chain). Importantly, decreased HXK1 K418<sub>hib</sub> regulated by HDAC2 attenuated the original chemical binding domain between HXK1 and glucose, inhibited the binding ability between HXK1 and glucose, and reduced catalytic ability of the enzyme, resulting in low production of glucose-6-phosphate and ATP. Further, it also increased Kir6.2 protein and the current of K<sub>ATP</sub> channel, and decreased APD.</p><p><strong>Conclusions: </strong>This study demonstrates the importance of K<sub>hib</sub> to catalysis of HXK1 and reveals molecular mechanisms of HXK1 K418<sub>hib</sub> in AF, providing new insight into strategies of AF.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"117"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874433/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02108-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Atrial fibrillation (AF) is the most common form of arrhythmia and is a growing clinical problem. Post-translational modifications (PTMs) constitute crucial epigenetic mechanisms but modification of lysine 2-hydroxyisobutyrylation (Khib) in AF is still unknown. This study aimed to investigate the role and mechanism of Khib in AF.

Methods: PTM proteomics was applied in the human atrial tissue from AF and sinus rhythm patients with heart valve disease during cardiac surgery to identify the Khib sites. The functional changes of differential modification sites were further validated at the cellular level. Cellular electrophysiology was performed to record the ion channel current and action potential duration (APD).

Results: The modification of 124 Khib sites in 35 proteins and 67 sites in 48 proteins exhibited significant increase or decrease in AF compared to sinus rhythm. Ten Khib sites were included in energy metabolism-related signaling pathways (HXK1, TPIS, PGM1, and ODPX in glycolysis; MDHC and IDH3A in tricarboxylic acid cycle; NDUS2, ETFB, ADT3, and ATPB in oxidative respiratory chain). Importantly, decreased HXK1 K418hib regulated by HDAC2 attenuated the original chemical binding domain between HXK1 and glucose, inhibited the binding ability between HXK1 and glucose, and reduced catalytic ability of the enzyme, resulting in low production of glucose-6-phosphate and ATP. Further, it also increased Kir6.2 protein and the current of KATP channel, and decreased APD.

Conclusions: This study demonstrates the importance of Khib to catalysis of HXK1 and reveals molecular mechanisms of HXK1 K418hib in AF, providing new insight into strategies of AF.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信