Deep learning for accurate classification of conifer pollen grains: enhancing species identification in palynology.

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Frontiers in Big Data Pub Date : 2025-02-14 eCollection Date: 2025-01-01 DOI:10.3389/fdata.2025.1507036
Masoud A Rostami, LeMaur Kydd, Behnaz Balmaki, Lee A Dyer, Julie M Allen
{"title":"Deep learning for accurate classification of conifer pollen grains: enhancing species identification in palynology.","authors":"Masoud A Rostami, LeMaur Kydd, Behnaz Balmaki, Lee A Dyer, Julie M Allen","doi":"10.3389/fdata.2025.1507036","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of pollen grains from <i>Abies</i> (fir), <i>Picea</i> (spruce), and <i>Pinus</i> (pine) is an important method for reconstructing historical environments, past landscapes and understanding human-environment interactions. However, distinguishing between pollen grains of conifer genera poses challenges in palynology due to their morphological similarities. To address this identification challenge, this study leverages advanced deep learning techniques, specifically transfer learning models, which are effective in identifying similarities among detailed features. We evaluated nine different transfer learning architectures: DenseNet201, EfficientNetV2S, InceptionV3, MobileNetV2, ResNet101, ResNet50, VGG16, VGG19, and Xception. Each model was trained and validated on a dataset of images of pollen grains collected from museum specimens, mounted and imaged for training purposes. The models were assessed on various performance metrics, including accuracy, precision, recall, and F1-score across training, validation, and testing phases. Our results indicate that ResNet101 relatively outperformed other models, achieving a test accuracy of 99%, with equally high precision, recall, and F1-score. This study underscores the efficacy of transfer learning to produce models that can aid in identifications of difficult species. These models may aid conifer species classification and enhance pollen grain analysis, critical for ecological research and monitoring environmental changes.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"8 ","pages":"1507036"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868112/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2025.1507036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate identification of pollen grains from Abies (fir), Picea (spruce), and Pinus (pine) is an important method for reconstructing historical environments, past landscapes and understanding human-environment interactions. However, distinguishing between pollen grains of conifer genera poses challenges in palynology due to their morphological similarities. To address this identification challenge, this study leverages advanced deep learning techniques, specifically transfer learning models, which are effective in identifying similarities among detailed features. We evaluated nine different transfer learning architectures: DenseNet201, EfficientNetV2S, InceptionV3, MobileNetV2, ResNet101, ResNet50, VGG16, VGG19, and Xception. Each model was trained and validated on a dataset of images of pollen grains collected from museum specimens, mounted and imaged for training purposes. The models were assessed on various performance metrics, including accuracy, precision, recall, and F1-score across training, validation, and testing phases. Our results indicate that ResNet101 relatively outperformed other models, achieving a test accuracy of 99%, with equally high precision, recall, and F1-score. This study underscores the efficacy of transfer learning to produce models that can aid in identifications of difficult species. These models may aid conifer species classification and enhance pollen grain analysis, critical for ecological research and monitoring environmental changes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信