Application of large language models in healthcare: A bibliometric analysis.

IF 2.9 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
DIGITAL HEALTH Pub Date : 2025-03-02 eCollection Date: 2025-01-01 DOI:10.1177/20552076251324444
Lanping Zhang, Qing Zhao, Dandan Zhang, Meijuan Song, Yu Zhang, Xiufen Wang
{"title":"Application of large language models in healthcare: A bibliometric analysis.","authors":"Lanping Zhang, Qing Zhao, Dandan Zhang, Meijuan Song, Yu Zhang, Xiufen Wang","doi":"10.1177/20552076251324444","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The objective is to provide an overview of the application of large language models (LLMs) in healthcare by employing a bibliometric analysis methodology.</p><p><strong>Method: </strong>We performed a comprehensive search for peer-reviewed English-language articles using PubMed and Web of Science. The selected articles were subsequently clustered and analyzed textually, with a focus on lexical co-occurrences, country-level and inter-author collaborations, and other relevant factors. This textual analysis produced high-level concept maps that illustrate specific terms and their interconnections.</p><p><strong>Findings: </strong>Our final sample comprised 371 English-language journal articles. The study revealed a sharp rise in the number of publications related to the application of LLMs in healthcare. However, the development is geographically imbalanced, with a higher concentration of articles originating from developed countries like the United States, Italy, and Germany, which also exhibit strong inter-country collaboration. LLMs are applied across various specialties, with researchers investigating their use in medical education, diagnosis, treatment, administrative reporting, and enhancing doctor-patient communication. Nonetheless, significant concerns persist regarding the risks and ethical implications of LLMs, including the potential for gender and racial bias, as well as the lack of transparency in the training datasets, which can lead to inaccurate or misleading responses.</p><p><strong>Conclusion: </strong>While the application of LLMs in healthcare is promising, the widespread adoption of LLMs in practice requires further improvements in their standardization and accuracy. It is critical to establish clear accountability guidelines, develop a robust regulatory framework, and ensure that training datasets are based on evidence-based sources to minimize risk and ensure ethical and reliable use.</p>","PeriodicalId":51333,"journal":{"name":"DIGITAL HEALTH","volume":"11 ","pages":"20552076251324444"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873863/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DIGITAL HEALTH","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20552076251324444","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The objective is to provide an overview of the application of large language models (LLMs) in healthcare by employing a bibliometric analysis methodology.

Method: We performed a comprehensive search for peer-reviewed English-language articles using PubMed and Web of Science. The selected articles were subsequently clustered and analyzed textually, with a focus on lexical co-occurrences, country-level and inter-author collaborations, and other relevant factors. This textual analysis produced high-level concept maps that illustrate specific terms and their interconnections.

Findings: Our final sample comprised 371 English-language journal articles. The study revealed a sharp rise in the number of publications related to the application of LLMs in healthcare. However, the development is geographically imbalanced, with a higher concentration of articles originating from developed countries like the United States, Italy, and Germany, which also exhibit strong inter-country collaboration. LLMs are applied across various specialties, with researchers investigating their use in medical education, diagnosis, treatment, administrative reporting, and enhancing doctor-patient communication. Nonetheless, significant concerns persist regarding the risks and ethical implications of LLMs, including the potential for gender and racial bias, as well as the lack of transparency in the training datasets, which can lead to inaccurate or misleading responses.

Conclusion: While the application of LLMs in healthcare is promising, the widespread adoption of LLMs in practice requires further improvements in their standardization and accuracy. It is critical to establish clear accountability guidelines, develop a robust regulatory framework, and ensure that training datasets are based on evidence-based sources to minimize risk and ensure ethical and reliable use.

大型语言模型在医疗保健领域的应用:文献计量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
DIGITAL HEALTH
DIGITAL HEALTH Multiple-
CiteScore
2.90
自引率
7.70%
发文量
302
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信