Bayesian Parameter Inference and Uncertainty Quantification for a Computational Pulmonary Hemodynamics Model Using Gaussian Processes.

ArXiv Pub Date : 2025-02-20
Amirreza Kachabi, Sofia Altieri Correa, Naomi C Chesler, Mitchel J Colebank
{"title":"Bayesian Parameter Inference and Uncertainty Quantification for a Computational Pulmonary Hemodynamics Model Using Gaussian Processes.","authors":"Amirreza Kachabi, Sofia Altieri Correa, Naomi C Chesler, Mitchel J Colebank","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Patient-specific modeling is a valuable tool in cardiovascular disease research, offering insights beyond what current clinical equipment can measure. Given the limitations of available clinical data, models that incorporate uncertainty can provide clinicians with better guidance for tailored treatments. However, such modeling must align with clinical time frameworks to ensure practical applicability. In this study, we employ a one-dimensional fluid dynamics model integrated with data from a canine model of chronic thromboembolic pulmonary hypertension (CTEPH) to investigate microvascular disease, which is believed to involve complex mechanisms. To enhance computational efficiency during model calibration, we implement a Gaussian process emulator. This approach enables us to explore the relationship between disease severity and microvascular parameters, offering new insights into the progression and treatment of CTEPH in a timeframe that is compatible with a reasonable clinical timeframe.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875295/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Patient-specific modeling is a valuable tool in cardiovascular disease research, offering insights beyond what current clinical equipment can measure. Given the limitations of available clinical data, models that incorporate uncertainty can provide clinicians with better guidance for tailored treatments. However, such modeling must align with clinical time frameworks to ensure practical applicability. In this study, we employ a one-dimensional fluid dynamics model integrated with data from a canine model of chronic thromboembolic pulmonary hypertension (CTEPH) to investigate microvascular disease, which is believed to involve complex mechanisms. To enhance computational efficiency during model calibration, we implement a Gaussian process emulator. This approach enables us to explore the relationship between disease severity and microvascular parameters, offering new insights into the progression and treatment of CTEPH in a timeframe that is compatible with a reasonable clinical timeframe.

基于高斯过程的肺血流动力学计算模型的贝叶斯参数推断和不确定性量化。
在心血管疾病研究中,患者特异性建模是一种有价值的工具,它提供了当前临床设备无法测量的见解。鉴于现有临床数据的局限性,纳入不确定性的模型可以为临床医生提供更好的定制治疗指导。然而,这样的建模必须与临床时间框架保持一致,以确保实际的适用性。在这项研究中,我们采用一维流体动力学模型结合犬慢性血栓栓塞性肺动脉高压(CTEPH)模型的数据来研究微血管疾病,这被认为涉及复杂的机制。为了提高模型标定时的计算效率,我们实现了一个高斯过程仿真器。这种方法使我们能够探索疾病严重程度与微血管参数之间的关系,为CTEPH在合理的临床时间框架内的进展和治疗提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信