Adaptive formation learning control for cooperative AUVs under complete uncertainty.

IF 2.9 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-02-14 eCollection Date: 2024-01-01 DOI:10.3389/frobt.2024.1491907
Emadodin Jandaghi, Mingxi Zhou, Paolo Stegagno, Chengzhi Yuan
{"title":"Adaptive formation learning control for cooperative AUVs under complete uncertainty.","authors":"Emadodin Jandaghi, Mingxi Zhou, Paolo Stegagno, Chengzhi Yuan","doi":"10.3389/frobt.2024.1491907","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This paper addresses the critical need for adaptive formation control in Autonomous Underwater Vehicles (AUVs) without requiring knowledge of system dynamics or environmental data. Current methods, often assuming partial knowledge like known mass matrices, limit adaptability in varied settings.</p><p><strong>Methods: </strong>We proposed two-layer framework treats all system dynamics, including the mass matrix, as entirely unknown, achieving configuration-agnostic control applicable to multiple underwater scenarios. The first layer features a cooperative estimator for inter-agent communication independent of global data, while the second employs a decentralized deterministic learning (DDL) controller using local feedback for precise trajectory control. The framework's radial basis function neural networks (RBFNN) store dynamic information, eliminating the need for relearning after system restarts.</p><p><strong>Results: </strong>This robust approach addresses uncertainties from unknown parametric values and unmodeled interactions internally, as well as external disturbances such as varying water currents and pressures, enhancing adaptability across diverse environments.</p><p><strong>Discussion: </strong>Comprehensive and rigorous mathematical proofs are provided to confirm the stability of the proposed controller, while simulation results validate each agent's control accuracy and signal boundedness, confirming the framework's stability and resilience in complex scenarios.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"11 ","pages":"1491907"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868763/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1491907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: This paper addresses the critical need for adaptive formation control in Autonomous Underwater Vehicles (AUVs) without requiring knowledge of system dynamics or environmental data. Current methods, often assuming partial knowledge like known mass matrices, limit adaptability in varied settings.

Methods: We proposed two-layer framework treats all system dynamics, including the mass matrix, as entirely unknown, achieving configuration-agnostic control applicable to multiple underwater scenarios. The first layer features a cooperative estimator for inter-agent communication independent of global data, while the second employs a decentralized deterministic learning (DDL) controller using local feedback for precise trajectory control. The framework's radial basis function neural networks (RBFNN) store dynamic information, eliminating the need for relearning after system restarts.

Results: This robust approach addresses uncertainties from unknown parametric values and unmodeled interactions internally, as well as external disturbances such as varying water currents and pressures, enhancing adaptability across diverse environments.

Discussion: Comprehensive and rigorous mathematical proofs are provided to confirm the stability of the proposed controller, while simulation results validate each agent's control accuracy and signal boundedness, confirming the framework's stability and resilience in complex scenarios.

完全不确定条件下协作式auv的自适应编队学习控制。
本文解决了自主水下航行器(auv)中自适应编队控制的关键需求,而不需要系统动力学或环境数据的知识。目前的方法,通常假设部分知识,如已知的质量矩阵,限制了在各种情况下的适应性。方法:我们提出了两层框架,将包括质量矩阵在内的所有系统动力学视为完全未知,实现了适用于多种水下场景的构型不可知控制。第一层具有独立于全局数据的智能体间通信的协作估计器,而第二层采用分散的确定性学习(DDL)控制器,使用局部反馈进行精确的轨迹控制。该框架的径向基函数神经网络(RBFNN)存储动态信息,消除了系统重启后重新学习的需要。结果:这种稳健的方法解决了未知参数值和内部未建模相互作用的不确定性,以及水流和压力变化等外部干扰,增强了对不同环境的适应性。讨论:给出了全面严谨的数学证明,证实了所提控制器的稳定性,仿真结果验证了各个agent的控制精度和信号有界性,证实了框架在复杂场景下的稳定性和弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信