Low compression smart clothing for respiratory rate monitoring using a bending angle sensor based on double-layer capacitance.

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Biomedical Engineering Letters Pub Date : 2025-01-18 eCollection Date: 2025-03-01 DOI:10.1007/s13534-025-00456-w
Tatsuya Kobayashi, Daisuke Goto, Yusuke Sakaue, Shima Okada, Naruhiro Shiozawa
{"title":"Low compression smart clothing for respiratory rate monitoring using a bending angle sensor based on double-layer capacitance.","authors":"Tatsuya Kobayashi, Daisuke Goto, Yusuke Sakaue, Shima Okada, Naruhiro Shiozawa","doi":"10.1007/s13534-025-00456-w","DOIUrl":null,"url":null,"abstract":"<p><p>In chronic respiratory diseases, continuous self-monitoring of vital signs such as respiratory rate aids in the early detection of exacerbations. In recent years, the development of smart clothing, such as garments equipped with sensors to measure respiratory rate, has been a focus of research. However, the usability and adoption of smart clothing are often compromised owing to the discomfort caused by compression pressure during wear. This study developed smart clothing designed to measure respiratory rate using a low compression pressure. This was achieved by integrating a bending angle sensor, based on double-layer capacitance, into the rib cage and abdomen areas. The accuracy of the respiratory rate measurement was evaluated in 20 healthy male subjects without respiratory diseases. Breathing was measured while the subjects wore the smart clothing and performed breathing exercises in sitting, supine, and lateral postures, following a metronome set between 12 and 30 bpm. To assess accuracy, the respiratory rate measured by the smart clothing was compared with that measured by a spirometer. The recorded compression pressure was 0.77 ± 0.21 kPa, with no subjects reporting discomfort. Correlation coefficients for respiratory rate in the different postures ranged within 0.97-0.99. The mean difference between the smart clothing and spirometer measurements was less than 0.1 bpm. The low mean difference indicated that the proposed low compression pressure wearable respiration sensor, employing a bending angle sensor based on double-layer capacitance, could measure respiratory rate accurately without causing discomfort and within an acceptable error range.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"15 2","pages":"389-399"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871213/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-025-00456-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In chronic respiratory diseases, continuous self-monitoring of vital signs such as respiratory rate aids in the early detection of exacerbations. In recent years, the development of smart clothing, such as garments equipped with sensors to measure respiratory rate, has been a focus of research. However, the usability and adoption of smart clothing are often compromised owing to the discomfort caused by compression pressure during wear. This study developed smart clothing designed to measure respiratory rate using a low compression pressure. This was achieved by integrating a bending angle sensor, based on double-layer capacitance, into the rib cage and abdomen areas. The accuracy of the respiratory rate measurement was evaluated in 20 healthy male subjects without respiratory diseases. Breathing was measured while the subjects wore the smart clothing and performed breathing exercises in sitting, supine, and lateral postures, following a metronome set between 12 and 30 bpm. To assess accuracy, the respiratory rate measured by the smart clothing was compared with that measured by a spirometer. The recorded compression pressure was 0.77 ± 0.21 kPa, with no subjects reporting discomfort. Correlation coefficients for respiratory rate in the different postures ranged within 0.97-0.99. The mean difference between the smart clothing and spirometer measurements was less than 0.1 bpm. The low mean difference indicated that the proposed low compression pressure wearable respiration sensor, employing a bending angle sensor based on double-layer capacitance, could measure respiratory rate accurately without causing discomfort and within an acceptable error range.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Engineering Letters
Biomedical Engineering Letters ENGINEERING, BIOMEDICAL-
CiteScore
6.80
自引率
0.00%
发文量
34
期刊介绍: Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信