Spherical model for Minimalist Machine Learning paradigm in handling complex databases.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-02-14 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1521063
Raúl Jimenez-Cruz, Cornelio Yáñez-Márquez, Miguel Gonzalez-Mendoza, Yenni Villuendas-Rey, Raúl Monroy
{"title":"Spherical model for Minimalist Machine Learning paradigm in handling complex databases.","authors":"Raúl Jimenez-Cruz, Cornelio Yáñez-Márquez, Miguel Gonzalez-Mendoza, Yenni Villuendas-Rey, Raúl Monroy","doi":"10.3389/frai.2025.1521063","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the development of the N-Spherical Minimalist Machine Learning (MML) classifier, an innovative model within the Minimalist Machine Learning paradigm. Using N-spherical coordinates and concepts from metaheuristics and associative models, this classifier effectively addresses challenges such as data dimensionality and class imbalance in complex datasets. Performance evaluations using the F1 measure and balanced accuracy demonstrate its superior efficiency and robustness compared to state-of-the-art classifiers. Statistical validation is conducted using the Friedman and Holm tests. Although currently limited to binary classification, this work highlights the potential of minimalist approaches in machine learning for classification of highly dimensional and imbalanced data. Future extensions aim to include multi-class problems and mechanisms for handling categorical data.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1521063"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868079/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1521063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the development of the N-Spherical Minimalist Machine Learning (MML) classifier, an innovative model within the Minimalist Machine Learning paradigm. Using N-spherical coordinates and concepts from metaheuristics and associative models, this classifier effectively addresses challenges such as data dimensionality and class imbalance in complex datasets. Performance evaluations using the F1 measure and balanced accuracy demonstrate its superior efficiency and robustness compared to state-of-the-art classifiers. Statistical validation is conducted using the Friedman and Holm tests. Although currently limited to binary classification, this work highlights the potential of minimalist approaches in machine learning for classification of highly dimensional and imbalanced data. Future extensions aim to include multi-class problems and mechanisms for handling categorical data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信