Spherical model for Minimalist Machine Learning paradigm in handling complex databases.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-02-14 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1521063
Raúl Jimenez-Cruz, Cornelio Yáñez-Márquez, Miguel Gonzalez-Mendoza, Yenni Villuendas-Rey, Raúl Monroy
{"title":"Spherical model for Minimalist Machine Learning paradigm in handling complex databases.","authors":"Raúl Jimenez-Cruz, Cornelio Yáñez-Márquez, Miguel Gonzalez-Mendoza, Yenni Villuendas-Rey, Raúl Monroy","doi":"10.3389/frai.2025.1521063","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the development of the N-Spherical Minimalist Machine Learning (MML) classifier, an innovative model within the Minimalist Machine Learning paradigm. Using N-spherical coordinates and concepts from metaheuristics and associative models, this classifier effectively addresses challenges such as data dimensionality and class imbalance in complex datasets. Performance evaluations using the F1 measure and balanced accuracy demonstrate its superior efficiency and robustness compared to state-of-the-art classifiers. Statistical validation is conducted using the Friedman and Holm tests. Although currently limited to binary classification, this work highlights the potential of minimalist approaches in machine learning for classification of highly dimensional and imbalanced data. Future extensions aim to include multi-class problems and mechanisms for handling categorical data.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1521063"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868079/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1521063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the development of the N-Spherical Minimalist Machine Learning (MML) classifier, an innovative model within the Minimalist Machine Learning paradigm. Using N-spherical coordinates and concepts from metaheuristics and associative models, this classifier effectively addresses challenges such as data dimensionality and class imbalance in complex datasets. Performance evaluations using the F1 measure and balanced accuracy demonstrate its superior efficiency and robustness compared to state-of-the-art classifiers. Statistical validation is conducted using the Friedman and Holm tests. Although currently limited to binary classification, this work highlights the potential of minimalist approaches in machine learning for classification of highly dimensional and imbalanced data. Future extensions aim to include multi-class problems and mechanisms for handling categorical data.

球面模型用于处理复杂数据库的极简机器学习范式。
本文介绍了n -球面极简机器学习(MML)分类器的发展,这是极简机器学习范式中的一种创新模型。使用n球坐标和元启发式和关联模型的概念,该分类器有效地解决了复杂数据集中的数据维度和类不平衡等挑战。使用F1度量和平衡精度的性能评估表明,与最先进的分类器相比,它具有优越的效率和鲁棒性。使用Friedman和Holm检验进行统计验证。虽然目前仅限于二元分类,但这项工作强调了极简方法在机器学习中对高维和不平衡数据进行分类的潜力。未来的扩展旨在包括多类问题和处理分类数据的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信