{"title":"Gut microbiome and plasma metabolome alterations in ileostomy and after closure of ileostomy.","authors":"Liang Xu, Xiaolong Li, Lang Chen, Haitao Ma, Ying Wang, Wenwen Liu, Anyan Liao, Liang Tan, Xiao Gao, Weidong Xiao, Hua Yang, Guangyan Ji, Yuan Qiu","doi":"10.1128/spectrum.01191-24","DOIUrl":null,"url":null,"abstract":"<p><p>A temporary loop ileostomy is a routine procedure for protecting the anastomosis in patients undergoing radical resection of rectal cancer. Fecal diversion by a diverting ileostomy may induce microbiota dysbiosis in the defunctioned colon; however, data on temporal and spatial microbiome and metabolome changes in these patients are sparse. Thirty patients who underwent ileostomy closure were enrolled. Fecal and plasma samples were collected successively before ileostomy closure, at the first postoperative defecation, and 1 month postoperatively. The 16S rRNA gene sequencing was used to assess changes in gut microbes, and metabolic components in the plasma were analyzed using global untargeted metabolomics. Advanced data analysis methods were used to examine the differences and correlations between flora and metabolites. The gut microbiota in the ileostomy effluent and defunctioned colon had lesser species diversity and richness, with an abundance of aerobic, gram-negative, and potentially pathogenic bacteria. After the intestinal continuity was restored with routine meal feeding, the gut microbes recovered to a standard composition within 1 month. Moreover, xanthine, traumatic acid, L-glutamine, and norepinephrine levels increased markedly in patients with ileostoma. The ileostomy closure reversed the ileostomy-associated metabolic alterations, including an increased abundance of L-leucine, creatine, and 2-ketobutyric acid. Furthermore, <i>Agathobacter</i> and <i>Peptostreptococcus</i> were most closely associated with the reconstruction of postoperative gut microbes. We described a spatiotemporal map of the intestinal microbial ecological reconstruction and metabolic recovery before and after ileostomy reversal for perioperative intervention in patients with ileostomy closure surgery.</p><p><strong>Importance: </strong>In this paper, the changes in the intestinal microbiome and plasma metabolome before and after temporary ileostomy were reported for the first time, and the dynamic changes in intestinal contents were described. At the same time, the key bacterial genera involved in the reestablishment of microflora after the restoration of intestinal continuity were found, and the key relationship between them and plasma metabolites was also found. More importantly, we found that patients with ileal fistula may be at risk of metabolic imbalance and that this particular metabolic state may potentially affect the course of tumor treatment. Finally, the samples in this study were obtained in their natural state and can be easily applied to the clinic to avoid unnecessary invasive examinations.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":" ","pages":"e0119124"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960061/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.01191-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A temporary loop ileostomy is a routine procedure for protecting the anastomosis in patients undergoing radical resection of rectal cancer. Fecal diversion by a diverting ileostomy may induce microbiota dysbiosis in the defunctioned colon; however, data on temporal and spatial microbiome and metabolome changes in these patients are sparse. Thirty patients who underwent ileostomy closure were enrolled. Fecal and plasma samples were collected successively before ileostomy closure, at the first postoperative defecation, and 1 month postoperatively. The 16S rRNA gene sequencing was used to assess changes in gut microbes, and metabolic components in the plasma were analyzed using global untargeted metabolomics. Advanced data analysis methods were used to examine the differences and correlations between flora and metabolites. The gut microbiota in the ileostomy effluent and defunctioned colon had lesser species diversity and richness, with an abundance of aerobic, gram-negative, and potentially pathogenic bacteria. After the intestinal continuity was restored with routine meal feeding, the gut microbes recovered to a standard composition within 1 month. Moreover, xanthine, traumatic acid, L-glutamine, and norepinephrine levels increased markedly in patients with ileostoma. The ileostomy closure reversed the ileostomy-associated metabolic alterations, including an increased abundance of L-leucine, creatine, and 2-ketobutyric acid. Furthermore, Agathobacter and Peptostreptococcus were most closely associated with the reconstruction of postoperative gut microbes. We described a spatiotemporal map of the intestinal microbial ecological reconstruction and metabolic recovery before and after ileostomy reversal for perioperative intervention in patients with ileostomy closure surgery.
Importance: In this paper, the changes in the intestinal microbiome and plasma metabolome before and after temporary ileostomy were reported for the first time, and the dynamic changes in intestinal contents were described. At the same time, the key bacterial genera involved in the reestablishment of microflora after the restoration of intestinal continuity were found, and the key relationship between them and plasma metabolites was also found. More importantly, we found that patients with ileal fistula may be at risk of metabolic imbalance and that this particular metabolic state may potentially affect the course of tumor treatment. Finally, the samples in this study were obtained in their natural state and can be easily applied to the clinic to avoid unnecessary invasive examinations.
期刊介绍:
Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.