Microwave Imaging for Breast Cancer Detection: Performance Assessment of a Next-Generation Transmission System.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Pedram Mojabi, Jeremie Bourqui, Zahra Lasemiimeni, Baldeep Grewal, Elise Fear
{"title":"Microwave Imaging for Breast Cancer Detection: Performance Assessment of a Next-Generation Transmission System.","authors":"Pedram Mojabi, Jeremie Bourqui, Zahra Lasemiimeni, Baldeep Grewal, Elise Fear","doi":"10.1109/TBME.2024.3521410","DOIUrl":null,"url":null,"abstract":"<p><p>Microwave imaging has been proposed for breast cancer detection and treatment monitoring. Prototype systems based on tomography and radar-based techniques have been tested on human subjects with promising results. Previously, we developed a system that estimated average permittivity in regions of the breast using signals transmitted through the tissues. Encouraging results with volunteers and patients motivated development of a system capable of creating more detailed images of the entire breast.</p><p><strong>Objective: </strong>In this paper, we aim to assess the performance of this next generation microwave imaging system and demonstrate scans of human subjects that relate to clinical information.</p><p><strong>Methods: </strong>With a novel imaging system, scans of homogeneous phantoms and phantoms with inclusions of various sizes are collected. The accuracy, detection and localization are assessed. A pilot study is carried out with a small group of volunteers with previous mammograms.</p><p><strong>Results: </strong>Images of flexible phantoms have average error of less than 10 % in the reconstructed average permittivity. Detection of inclusions of 1 cm diameter and greater is demonstrated. The feasibility of scanning human subjects is also demonstrated by providing microwave images of several healthy volunteers with previous mammograms.</p><p><strong>Significance: </strong>A novel high-resolution microwave transmission imaging system, in conjunction with a fast quantitative reconstruction algorithm capable of detecting 1 cm diameter inclusions, is designed for breast imaging applications. It can image various breast sizes without the need for matching fluid.</p><p><strong>Conclusion: </strong>Overall, the results indicate that this imaging system is well suited for further exploration of microwave imaging with human subjects.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2024.3521410","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microwave imaging has been proposed for breast cancer detection and treatment monitoring. Prototype systems based on tomography and radar-based techniques have been tested on human subjects with promising results. Previously, we developed a system that estimated average permittivity in regions of the breast using signals transmitted through the tissues. Encouraging results with volunteers and patients motivated development of a system capable of creating more detailed images of the entire breast.

Objective: In this paper, we aim to assess the performance of this next generation microwave imaging system and demonstrate scans of human subjects that relate to clinical information.

Methods: With a novel imaging system, scans of homogeneous phantoms and phantoms with inclusions of various sizes are collected. The accuracy, detection and localization are assessed. A pilot study is carried out with a small group of volunteers with previous mammograms.

Results: Images of flexible phantoms have average error of less than 10 % in the reconstructed average permittivity. Detection of inclusions of 1 cm diameter and greater is demonstrated. The feasibility of scanning human subjects is also demonstrated by providing microwave images of several healthy volunteers with previous mammograms.

Significance: A novel high-resolution microwave transmission imaging system, in conjunction with a fast quantitative reconstruction algorithm capable of detecting 1 cm diameter inclusions, is designed for breast imaging applications. It can image various breast sizes without the need for matching fluid.

Conclusion: Overall, the results indicate that this imaging system is well suited for further exploration of microwave imaging with human subjects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信