Cutting Skill Assessment by Motion Analysis Using Deep Learning and Spatial Marker Tracking.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Bai-Quan Su, Xu-Dong Ma, Weihan Li, Zi-Ao Kuang, Yi Gong, Gang Wang, Qingqian Zhang, Wenyong Liu, Changsheng Li, Li Gao, Junchen Wang
{"title":"Cutting Skill Assessment by Motion Analysis Using Deep Learning and Spatial Marker Tracking.","authors":"Bai-Quan Su, Xu-Dong Ma, Weihan Li, Zi-Ao Kuang, Yi Gong, Gang Wang, Qingqian Zhang, Wenyong Liu, Changsheng Li, Li Gao, Junchen Wang","doi":"10.1109/TBME.2025.3529500","DOIUrl":null,"url":null,"abstract":"<p><p>The assessment of surgical skill is crucial for indicating a surgeon's proficiency. While motion analysis of surgical tools is widely used in endoscopic surgery, it is not commonly applied to open surgery. Instead, open surgery skill assessment relies on observing the trajectory of surgical tools on tissue. This observation-based method often lacks clear standards, leading to inaccurate assessments. This paper presents a method for evaluating cutting skill in open surgery through scalpel motion analysis. A 3D multiple-facet ArUco code cube is designed, and a dataset of tip coordinate system poses for various scalpels in the ArUco code coordinate system (ACS) is established using the pivot calibration method. The YOLOv8 model and an image dataset of different scalpels are used to identify the scalpel type and select its tip position. The tip position is then transformed from ACS to a binocular camera coordinate system (BCS), representing the incision curve made by the scalpel. Five assessment metrics are proposed to quantify the surgeon's cutting skill: average incision curvature deviation, incision length difference, incision endpoint deviation, average incision deviation, and average cutting jerk. Experiments involving twenty expert and novice surgeons performing four common incisions (straight line, polyline, semicircle, and cross line) demonstrate the metrics' effectiveness. The metrics provide a clear, objective display of individual cutting skills, and a combined ranking reveals comparative skill levels. This study offers a precise method for evaluating surgeons' cutting skills with a scalpel in open surgery.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3529500","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The assessment of surgical skill is crucial for indicating a surgeon's proficiency. While motion analysis of surgical tools is widely used in endoscopic surgery, it is not commonly applied to open surgery. Instead, open surgery skill assessment relies on observing the trajectory of surgical tools on tissue. This observation-based method often lacks clear standards, leading to inaccurate assessments. This paper presents a method for evaluating cutting skill in open surgery through scalpel motion analysis. A 3D multiple-facet ArUco code cube is designed, and a dataset of tip coordinate system poses for various scalpels in the ArUco code coordinate system (ACS) is established using the pivot calibration method. The YOLOv8 model and an image dataset of different scalpels are used to identify the scalpel type and select its tip position. The tip position is then transformed from ACS to a binocular camera coordinate system (BCS), representing the incision curve made by the scalpel. Five assessment metrics are proposed to quantify the surgeon's cutting skill: average incision curvature deviation, incision length difference, incision endpoint deviation, average incision deviation, and average cutting jerk. Experiments involving twenty expert and novice surgeons performing four common incisions (straight line, polyline, semicircle, and cross line) demonstrate the metrics' effectiveness. The metrics provide a clear, objective display of individual cutting skills, and a combined ranking reveals comparative skill levels. This study offers a precise method for evaluating surgeons' cutting skills with a scalpel in open surgery.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信