{"title":"PARP1 Exacerbates Prostatitis by Promoting M1 Macrophages Polarization through NF-κB Pathway.","authors":"Lu Jin, Jiaxing Chen, Jianhui Fu, Jingyi Lou, Yingxue Guo, Xia Liu, Xiaojuan Xu, Huiying Fu, Qiyang Shou","doi":"10.1007/s10753-025-02247-y","DOIUrl":null,"url":null,"abstract":"<p><p>PARP1 is recognized for its role as a DNA damage sensor and its involvement in inflammatory diseases, but its impact on prostatitis remains unclear. We aimed to elucidate how PARP1 affects prostatitis progression. Our results showed that in 1% carrageenan-induced prostatitis mouse model, Parp1<sup>-/-</sup> prostatitic mice showed less pathological damage, decreased prostate weight, and lower inflammatory indices, decreased macrophage and neutrophil infiltration, down-regulated the expression of pro-inflammatory cytokines (IL-6, IL-12p70, CCL2, TNF) and up-regulated anti-inflammatory cytokine IL-10 in prostate tissue. The expression of NF-κB, TNF, and IL-6 mRNA in the prostate tissue of Parp1<sup>-/-</sup> prostatitic mice decreased. In vitro experiments revealed that M1(CD206<sup>-</sup>CD86<sup>+)</sup> macrophage in LPS-induced macrophage of Parp1<sup>-/-</sup> mice decreased, as did iNOS, TNF, IL-6 and NF-κB mRNA expression. Mechanically, treatment with the PARP1 inhibitor (AG14361) led to a significant reduction in NF-κB mRNA and Phospho-NF-κB P65 protein expression in macrophages. Following intervention with NF-κB inhibitors (Bay 11-7082), both IL-6 protein and mRNA levels were markedly diminished, meanwhile the secretion of IL-6, IL-10, IL-12p70, CCL2, IFN-γ, and TNF exhibited a pronounced dose-dependent decrease. Collectively, these findings indicated that PARP1 exacerbates carrageenan-induced prostatitis by promoting M1 macrophages polarization via the NF-κB pathway, suggesting PARP1 could be a potential therapeutic target for macrophage-based treatments in prostatitis.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-025-02247-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PARP1 is recognized for its role as a DNA damage sensor and its involvement in inflammatory diseases, but its impact on prostatitis remains unclear. We aimed to elucidate how PARP1 affects prostatitis progression. Our results showed that in 1% carrageenan-induced prostatitis mouse model, Parp1-/- prostatitic mice showed less pathological damage, decreased prostate weight, and lower inflammatory indices, decreased macrophage and neutrophil infiltration, down-regulated the expression of pro-inflammatory cytokines (IL-6, IL-12p70, CCL2, TNF) and up-regulated anti-inflammatory cytokine IL-10 in prostate tissue. The expression of NF-κB, TNF, and IL-6 mRNA in the prostate tissue of Parp1-/- prostatitic mice decreased. In vitro experiments revealed that M1(CD206-CD86+) macrophage in LPS-induced macrophage of Parp1-/- mice decreased, as did iNOS, TNF, IL-6 and NF-κB mRNA expression. Mechanically, treatment with the PARP1 inhibitor (AG14361) led to a significant reduction in NF-κB mRNA and Phospho-NF-κB P65 protein expression in macrophages. Following intervention with NF-κB inhibitors (Bay 11-7082), both IL-6 protein and mRNA levels were markedly diminished, meanwhile the secretion of IL-6, IL-10, IL-12p70, CCL2, IFN-γ, and TNF exhibited a pronounced dose-dependent decrease. Collectively, these findings indicated that PARP1 exacerbates carrageenan-induced prostatitis by promoting M1 macrophages polarization via the NF-κB pathway, suggesting PARP1 could be a potential therapeutic target for macrophage-based treatments in prostatitis.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.