Stationary and Sparse Denoising Approach for Corticomuscular Causality Estimation.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Farwa Abbas, Verity McClelland, Zoran Cvetkovic, Wei Dai
{"title":"Stationary and Sparse Denoising Approach for Corticomuscular Causality Estimation.","authors":"Farwa Abbas, Verity McClelland, Zoran Cvetkovic, Wei Dai","doi":"10.1109/TBME.2024.3518602","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Cortico-muscular communication patterns are instrumental in understanding movement control. Estimating significant causal relationships between motor cortex electroencephalogram (EEG) and surface electromyogram (sEMG) from concurrently active muscles presents a formidable challenge since the relevant processes underlying muscle control are typically weak in comparison to measurement noise and background activities.</p><p><strong>Methodology: </strong>In this paper, a novel framework is proposed to simultaneously estimate the order of the autoregressive model of cortico-muscular interactions along with the parameters while enforcing stationarity condition in a convex program to ensure global optimality. The proposed method is further extended to a non-convex program to account for the presence of measurement noise in the recorded signals by introducing a wavelet sparsity assumption on the excitation noise in the model.</p><p><strong>Results: </strong>The proposed methodology is validated using both simulated data and neurophysiological signals. In case of simulated data, the performance of the proposed methods has been compared with the benchmark approaches in terms of order identification, computational efficiency, and goodness of fit in relation to various noise levels. In case of physiological signals our proposed methods are compared against the state-of-the-art approaches in terms of the ability to detect Granger causality.</p><p><strong>Significance: </strong>The proposed methods are shown to be effective in handling stationarity and measurement noise assumptions, revealing significant causal interactions from brain to muscles and vice versa.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2024.3518602","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Cortico-muscular communication patterns are instrumental in understanding movement control. Estimating significant causal relationships between motor cortex electroencephalogram (EEG) and surface electromyogram (sEMG) from concurrently active muscles presents a formidable challenge since the relevant processes underlying muscle control are typically weak in comparison to measurement noise and background activities.

Methodology: In this paper, a novel framework is proposed to simultaneously estimate the order of the autoregressive model of cortico-muscular interactions along with the parameters while enforcing stationarity condition in a convex program to ensure global optimality. The proposed method is further extended to a non-convex program to account for the presence of measurement noise in the recorded signals by introducing a wavelet sparsity assumption on the excitation noise in the model.

Results: The proposed methodology is validated using both simulated data and neurophysiological signals. In case of simulated data, the performance of the proposed methods has been compared with the benchmark approaches in terms of order identification, computational efficiency, and goodness of fit in relation to various noise levels. In case of physiological signals our proposed methods are compared against the state-of-the-art approaches in terms of the ability to detect Granger causality.

Significance: The proposed methods are shown to be effective in handling stationarity and measurement noise assumptions, revealing significant causal interactions from brain to muscles and vice versa.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信