Cheng Chen, Min Deng, Yuan Zhong, Jinyue Cai, Karen Kar Wun Chan, Qi Dou, Kelvin Kam Lung Chong, Pheng-Ann Heng, Winnie Chiu-Wing Chu
{"title":"Multi-organ Segmentation from Partially Labeled and Unaligned Multi-modal MRI in Thyroid-associated Orbitopathy.","authors":"Cheng Chen, Min Deng, Yuan Zhong, Jinyue Cai, Karen Kar Wun Chan, Qi Dou, Kelvin Kam Lung Chong, Pheng-Ann Heng, Winnie Chiu-Wing Chu","doi":"10.1109/JBHI.2025.3545138","DOIUrl":null,"url":null,"abstract":"<p><p>Thyroid-associated orbitopathy (TAO) is a prevalent inflammatory autoimmune disorder, leading to orbital disfigurement and visual disability. Automatic comprehensive segmentation tailored for quantitative multi-modal MRI assessment of TAO holds enormous promise but is still lacking. In this paper, we propose a novel method, named cross-modal attentive self-training (CMAST), for the multi-organ segmentation in TAO using partially labeled and unaligned multi-modal MRI data. Our method first introduces a dedicatedly designed cross-modal pseudo label self-training scheme, which leverages self-training to refine the initial pseudo labels generated by cross-modal registration, so as to complete the label sets for comprehensive segmentation. With the obtained pseudo labels, we further devise a learnable attentive fusion module to aggregate multi-modal knowledge based on learned cross-modal feature attention, which relaxes the requirement of pixel-wise alignment across modalities. A prototypical contrastive learning loss is further incorporated to facilitate cross-modal feature alignment. We evaluate our method on a large clinical TAO cohort with 100 cases of multi-modal orbital MRI. The experimental results demonstrate the promising performance of our method in achieving comprehensive segmentation of TAO-affected organs on both T1 and T1c modalities, outperforming previous methods by a large margin. Code will be released upon acceptance.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3545138","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Thyroid-associated orbitopathy (TAO) is a prevalent inflammatory autoimmune disorder, leading to orbital disfigurement and visual disability. Automatic comprehensive segmentation tailored for quantitative multi-modal MRI assessment of TAO holds enormous promise but is still lacking. In this paper, we propose a novel method, named cross-modal attentive self-training (CMAST), for the multi-organ segmentation in TAO using partially labeled and unaligned multi-modal MRI data. Our method first introduces a dedicatedly designed cross-modal pseudo label self-training scheme, which leverages self-training to refine the initial pseudo labels generated by cross-modal registration, so as to complete the label sets for comprehensive segmentation. With the obtained pseudo labels, we further devise a learnable attentive fusion module to aggregate multi-modal knowledge based on learned cross-modal feature attention, which relaxes the requirement of pixel-wise alignment across modalities. A prototypical contrastive learning loss is further incorporated to facilitate cross-modal feature alignment. We evaluate our method on a large clinical TAO cohort with 100 cases of multi-modal orbital MRI. The experimental results demonstrate the promising performance of our method in achieving comprehensive segmentation of TAO-affected organs on both T1 and T1c modalities, outperforming previous methods by a large margin. Code will be released upon acceptance.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.