Acupuncture State Detection at Zusanli (ST-36) Based on Scalp EEG and Transformer.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Wenhao Rao, Meiyan Xu, Haochen Wang, Weicheng Hua, Jiayang Guo, Yongheng Zhang, Haibin Zhu, Ziqiu Zhou, Jiawei Xiong, Jianbin Zhang, Yijie Pan, Peipei Gu, Duo Chen
{"title":"Acupuncture State Detection at Zusanli (ST-36) Based on Scalp EEG and Transformer.","authors":"Wenhao Rao, Meiyan Xu, Haochen Wang, Weicheng Hua, Jiayang Guo, Yongheng Zhang, Haibin Zhu, Ziqiu Zhou, Jiawei Xiong, Jianbin Zhang, Yijie Pan, Peipei Gu, Duo Chen","doi":"10.1109/JBHI.2025.3540924","DOIUrl":null,"url":null,"abstract":"<p><p>In clinical acupuncture practice, needle twirling (NT) and needle retention (NR) are strategically combined to achieve different therapeutic effects, highlighting the importance of distinguishing between different acupuncture states. Scalp EEG has been proven significantly relevant to brain activity and acupuncture stimulation. In this work, we designed an acupuncture paradigm to collect scalp EEG to study the differences in EEG changes during different acupuncture states. Since deep learning (DL) has been increasingly used in EEG analysis, we propose the Acupuncture Transformer Detector (ATD), a model based on Convolutional Neural Networks (CNN) and Transformer technology. ATD encapsulates the local and global features of EEG under the acupuncture states of Zusanli acupoint (ST-36) in an end-to-end classification framework. The experiment results from 28 healthy participants show that the proposed model can efficiently classify the EEG in different states, with an accuracy of . In this study, time-frequency analysis revealed that power changes were mainly confined to the delta frequency band under different acupuncture states. Brain topography revealed that ST-36 was activated primarily on the left frontal and parieto-occipital areas. This method provides new ideas for automatic recognition of acupuncture status from the perspective of DL, offering new solutions for standardizing acupuncture procedures.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3540924","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In clinical acupuncture practice, needle twirling (NT) and needle retention (NR) are strategically combined to achieve different therapeutic effects, highlighting the importance of distinguishing between different acupuncture states. Scalp EEG has been proven significantly relevant to brain activity and acupuncture stimulation. In this work, we designed an acupuncture paradigm to collect scalp EEG to study the differences in EEG changes during different acupuncture states. Since deep learning (DL) has been increasingly used in EEG analysis, we propose the Acupuncture Transformer Detector (ATD), a model based on Convolutional Neural Networks (CNN) and Transformer technology. ATD encapsulates the local and global features of EEG under the acupuncture states of Zusanli acupoint (ST-36) in an end-to-end classification framework. The experiment results from 28 healthy participants show that the proposed model can efficiently classify the EEG in different states, with an accuracy of . In this study, time-frequency analysis revealed that power changes were mainly confined to the delta frequency band under different acupuncture states. Brain topography revealed that ST-36 was activated primarily on the left frontal and parieto-occipital areas. This method provides new ideas for automatic recognition of acupuncture status from the perspective of DL, offering new solutions for standardizing acupuncture procedures.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信