{"title":"Optimized Drug-Drug Interaction Extraction With BioGPT and Focal Loss-Based Attention.","authors":"Zhu Yuan, Shuailiang Zhang, Huiyun Zhang, Ping Xie, Yaxun Jia","doi":"10.1109/JBHI.2025.3540861","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-drug interactions (DDIs) are a significant focus in biomedical research and clinical practice due to their potential to compromise treatment outcomes or cause adverse effects. While deep learning approaches have advanced DDI extraction, challenges such as severe class imbalance and the complexity of biomedical relationships persist. This study introduces BioFocal-DDI, a framework combining BioGPT for data augmentation, BioBERT and BiLSTM for contextual and sequential feature extraction, and Relational Graph Convolutional Networks (ReGCN) for relational modeling. To address class imbalance, a Focal Loss-based Attention mechanism is employed to enhance learning on underrepresented and challenging instances. Evaluated on the DDI Extraction 2013 dataset, BioFocal-DDI achieves a precision of 86.75%, recall of 86.53%, and an F1 Score of 86.64%. These results suggest that the proposed method is effective in improving DDI extraction. All our code and data have been publicly released at https://github.com/Hero-Legend/BioFocal-DDI.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3540861","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Drug-drug interactions (DDIs) are a significant focus in biomedical research and clinical practice due to their potential to compromise treatment outcomes or cause adverse effects. While deep learning approaches have advanced DDI extraction, challenges such as severe class imbalance and the complexity of biomedical relationships persist. This study introduces BioFocal-DDI, a framework combining BioGPT for data augmentation, BioBERT and BiLSTM for contextual and sequential feature extraction, and Relational Graph Convolutional Networks (ReGCN) for relational modeling. To address class imbalance, a Focal Loss-based Attention mechanism is employed to enhance learning on underrepresented and challenging instances. Evaluated on the DDI Extraction 2013 dataset, BioFocal-DDI achieves a precision of 86.75%, recall of 86.53%, and an F1 Score of 86.64%. These results suggest that the proposed method is effective in improving DDI extraction. All our code and data have been publicly released at https://github.com/Hero-Legend/BioFocal-DDI.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.