Personalized Model Identification for Glucose Dynamics from Clinical Data with Incomplete Inputs.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Basak Ozaslan, Eleonora M Aiello, Emilia Fushimi, Francis J Doyle, Eyal Dassau
{"title":"Personalized Model Identification for Glucose Dynamics from Clinical Data with Incomplete Inputs.","authors":"Basak Ozaslan, Eleonora M Aiello, Emilia Fushimi, Francis J Doyle, Eyal Dassau","doi":"10.1109/TBME.2025.3530711","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>A common challenge in model identification with clinical data is incomplete and sometimes imprecise information. In this work, we provide a method to reconstruct the corrupted input data in a clinical dataset and, jointly identify the person-specific parameters of a metabolic model describing meal-insulin-glucose-dynamics for people with type 1 diabetes (T1D).</p><p><strong>Method: </strong>The proposed method is an algorithm that iterates between nonlinear least-squares and mixed-integer quadratic programming to optimize model parameters in conjunction with sparse corrections to the input data. In order to handle long stretches of data, the optimization problem is designed to be i) computationally tractable, and ii) robust against the potential presence of significant inaccuracies corrupting a data portion. Moreover, since the pattern of the inaccuracies is specific to each person, we propose a personalized hyperparameter tuning approach. The method is applied on clinical data from 13 people with T1D. Identified model performance is compared to the performance of model identified with standard least squares (LS) method.</p><p><strong>Results: </strong>Compared to LS, identifying corrections in conjunction with model parameters on training data lead to an improvement in the model prediction capabilities on unseen data with an average 2.2% improvement in MARD for two-hour prediction horizon (p-value = 0.0006).</p><p><strong>Conclusions: </strong>The proposed method is effective in model identification for clinical data with unknown inaccuracies in the inputs.</p><p><strong>Significance: </strong>Personalized models with high accuracy can inform treatment decisions and lead to better glucose control outcomes in people with T1D.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3530711","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: A common challenge in model identification with clinical data is incomplete and sometimes imprecise information. In this work, we provide a method to reconstruct the corrupted input data in a clinical dataset and, jointly identify the person-specific parameters of a metabolic model describing meal-insulin-glucose-dynamics for people with type 1 diabetes (T1D).

Method: The proposed method is an algorithm that iterates between nonlinear least-squares and mixed-integer quadratic programming to optimize model parameters in conjunction with sparse corrections to the input data. In order to handle long stretches of data, the optimization problem is designed to be i) computationally tractable, and ii) robust against the potential presence of significant inaccuracies corrupting a data portion. Moreover, since the pattern of the inaccuracies is specific to each person, we propose a personalized hyperparameter tuning approach. The method is applied on clinical data from 13 people with T1D. Identified model performance is compared to the performance of model identified with standard least squares (LS) method.

Results: Compared to LS, identifying corrections in conjunction with model parameters on training data lead to an improvement in the model prediction capabilities on unseen data with an average 2.2% improvement in MARD for two-hour prediction horizon (p-value = 0.0006).

Conclusions: The proposed method is effective in model identification for clinical data with unknown inaccuracies in the inputs.

Significance: Personalized models with high accuracy can inform treatment decisions and lead to better glucose control outcomes in people with T1D.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信