A Novel Spatial Auditory Brain-Computer Interface based on Low-Frequency Periodic Auditory Motion Stimulation Paradigm.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Huanqing Zhang, Jun Xie, Chenguang Zhao, Zhiwei Jin, Fangzhao Du, Yujie Chen, Guanghua Xu, Qing Tao, Min Li
{"title":"A Novel Spatial Auditory Brain-Computer Interface based on Low-Frequency Periodic Auditory Motion Stimulation Paradigm.","authors":"Huanqing Zhang, Jun Xie, Chenguang Zhao, Zhiwei Jin, Fangzhao Du, Yujie Chen, Guanghua Xu, Qing Tao, Min Li","doi":"10.1109/TBME.2025.3544646","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to improve the performance of auditory brain-computer interfaces (BCIs) by developing two-target and three-target paradigms based on steady-state motion auditory evoked potential (SSMAEP) using low-frequency stimuli in a spatial audio environment. SSMAEP is elicited by auditory stimuli exhibited by periodic and discrete changes in auditory spatial position.</p><p><strong>Methods: </strong>We designed a periodic auditory motion stimulation paradigm to evoke SSMAEP. Two-target and three-target SSMAEP-BCIs were developed. For the two-target SSMAEP-BCI, two periodic auditory motion stimuli with different motion frequencies were located on the left (2 Hz) and right (1.6 Hz) sides of the head, respectively. For the three-target SSMAEP-BCI, three periodic auditory motion stimuli with different motion frequencies were located on the front (2 Hz), left (2.4 Hz) and right (1.6 Hz) sides of the head, respectively.</p><p><strong>Results: </strong>SSMAEP amplitudes were modulated by auditory selective attention. In the two-target BCI, the offline experiments showed a peak average information transfer rate (ITR) of 7.70 bits/min, while the online experiments had a mean accuracy of 82.83% and an ITR of 4.41 bits/min. The three-target BCI achieved a peak ITR of 12.04 bits/min offline, with an online mean accuracy of 80.45% and an ITR of 7.05 bits/min.</p><p><strong>Conclusion: </strong>The study confirms the feasibility and enhanced performance of spatial low-frequency SSMAEP-BCIs.</p><p><strong>Significance: </strong>This novel approach to SSMAEP-BCI offers a promising direction for enhancing auditory BCI performance, potentially improving user experience and application in complex environments.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3544646","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to improve the performance of auditory brain-computer interfaces (BCIs) by developing two-target and three-target paradigms based on steady-state motion auditory evoked potential (SSMAEP) using low-frequency stimuli in a spatial audio environment. SSMAEP is elicited by auditory stimuli exhibited by periodic and discrete changes in auditory spatial position.

Methods: We designed a periodic auditory motion stimulation paradigm to evoke SSMAEP. Two-target and three-target SSMAEP-BCIs were developed. For the two-target SSMAEP-BCI, two periodic auditory motion stimuli with different motion frequencies were located on the left (2 Hz) and right (1.6 Hz) sides of the head, respectively. For the three-target SSMAEP-BCI, three periodic auditory motion stimuli with different motion frequencies were located on the front (2 Hz), left (2.4 Hz) and right (1.6 Hz) sides of the head, respectively.

Results: SSMAEP amplitudes were modulated by auditory selective attention. In the two-target BCI, the offline experiments showed a peak average information transfer rate (ITR) of 7.70 bits/min, while the online experiments had a mean accuracy of 82.83% and an ITR of 4.41 bits/min. The three-target BCI achieved a peak ITR of 12.04 bits/min offline, with an online mean accuracy of 80.45% and an ITR of 7.05 bits/min.

Conclusion: The study confirms the feasibility and enhanced performance of spatial low-frequency SSMAEP-BCIs.

Significance: This novel approach to SSMAEP-BCI offers a promising direction for enhancing auditory BCI performance, potentially improving user experience and application in complex environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信