Mesothelin-targeted CAR-T cells secreting NKG2D-BiTEs exhibit potent efficacy against triple-negative breast cancer.

IF 9.4 1区 医学 Q1 HEMATOLOGY
Muhammad Auwal Saliu, Qi Wang, Mansur Dabai Salisu, Yuanfeng Ren, Pengchao Zhang, Rabiatu Bako Suleiman, Bingbing Cao, Yiqiao Xu, Xudong Liu, Frederic Lluis, Maoxuan Liu, Xiaochun Wan
{"title":"Mesothelin-targeted CAR-T cells secreting NKG2D-BiTEs exhibit potent efficacy against triple-negative breast cancer.","authors":"Muhammad Auwal Saliu, Qi Wang, Mansur Dabai Salisu, Yuanfeng Ren, Pengchao Zhang, Rabiatu Bako Suleiman, Bingbing Cao, Yiqiao Xu, Xudong Liu, Frederic Lluis, Maoxuan Liu, Xiaochun Wan","doi":"10.1186/s40164-025-00621-y","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is an aggressive subtype with poor prognosis and limited treatment options. Chimeric antigen receptor (CAR)-T cell therapy holds promise, but its efficacy is hindered by tumor antigen escape and heterogeneity. To address these challenges, we developed a novel bispecific T cell engagers CAR-T (BiTEs CAR-T) targeting Mesothelin (MSLN) and secreting NKG2D-Bispecific T cell Engagers (BiTEs) to engage NKG2D ligands (NKG2DL). Analysis of TNBC tissues using The Cancer Genome Atlas and tumor microarrays revealed high but weakly correlated expression of MSLN and NKG2DL, making them ideal targets for dual engagement. To reduce immunogenicity and enhance stability, we used a nanobody and the natural receptor NKG2D as antigen-binding domains instead of traditional scFvs in the CAR construct. The secreted BiTEs could promote the cytotoxicity of untransduced T cells against NKG2DL + tumor cells. In vitro, BiTEs CAR-T cells exhibited superior cytotoxicity, T cell activation, and cytokines production against heterogeneous target cells compared to MSLN CAR-T. In vivo, BiTEs CAR-T cells demonstrated potent antitumor activity in zebrafish and murine TNBC models, significantly reducing tumor burden and prolonging survival without detectable toxicity. These findings suggest that BiTE CAR-T cells offer a highly promising therapeutic strategy for TNBC by addressing antigen heterogeneity and immune escape mechanisms, with promising translational potential for clinical application.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"14 1","pages":"27"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-025-00621-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Triple-negative breast cancer (TNBC) is an aggressive subtype with poor prognosis and limited treatment options. Chimeric antigen receptor (CAR)-T cell therapy holds promise, but its efficacy is hindered by tumor antigen escape and heterogeneity. To address these challenges, we developed a novel bispecific T cell engagers CAR-T (BiTEs CAR-T) targeting Mesothelin (MSLN) and secreting NKG2D-Bispecific T cell Engagers (BiTEs) to engage NKG2D ligands (NKG2DL). Analysis of TNBC tissues using The Cancer Genome Atlas and tumor microarrays revealed high but weakly correlated expression of MSLN and NKG2DL, making them ideal targets for dual engagement. To reduce immunogenicity and enhance stability, we used a nanobody and the natural receptor NKG2D as antigen-binding domains instead of traditional scFvs in the CAR construct. The secreted BiTEs could promote the cytotoxicity of untransduced T cells against NKG2DL + tumor cells. In vitro, BiTEs CAR-T cells exhibited superior cytotoxicity, T cell activation, and cytokines production against heterogeneous target cells compared to MSLN CAR-T. In vivo, BiTEs CAR-T cells demonstrated potent antitumor activity in zebrafish and murine TNBC models, significantly reducing tumor burden and prolonging survival without detectable toxicity. These findings suggest that BiTE CAR-T cells offer a highly promising therapeutic strategy for TNBC by addressing antigen heterogeneity and immune escape mechanisms, with promising translational potential for clinical application.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
7.30%
发文量
97
审稿时长
6 weeks
期刊介绍: Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings. Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信