Muhammad Auwal Saliu, Qi Wang, Mansur Dabai Salisu, Yuanfeng Ren, Pengchao Zhang, Rabiatu Bako Suleiman, Bingbing Cao, Yiqiao Xu, Xudong Liu, Frederic Lluis, Maoxuan Liu, Xiaochun Wan
{"title":"Mesothelin-targeted CAR-T cells secreting NKG2D-BiTEs exhibit potent efficacy against triple-negative breast cancer.","authors":"Muhammad Auwal Saliu, Qi Wang, Mansur Dabai Salisu, Yuanfeng Ren, Pengchao Zhang, Rabiatu Bako Suleiman, Bingbing Cao, Yiqiao Xu, Xudong Liu, Frederic Lluis, Maoxuan Liu, Xiaochun Wan","doi":"10.1186/s40164-025-00621-y","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is an aggressive subtype with poor prognosis and limited treatment options. Chimeric antigen receptor (CAR)-T cell therapy holds promise, but its efficacy is hindered by tumor antigen escape and heterogeneity. To address these challenges, we developed a novel bispecific T cell engagers CAR-T (BiTEs CAR-T) targeting Mesothelin (MSLN) and secreting NKG2D-Bispecific T cell Engagers (BiTEs) to engage NKG2D ligands (NKG2DL). Analysis of TNBC tissues using The Cancer Genome Atlas and tumor microarrays revealed high but weakly correlated expression of MSLN and NKG2DL, making them ideal targets for dual engagement. To reduce immunogenicity and enhance stability, we used a nanobody and the natural receptor NKG2D as antigen-binding domains instead of traditional scFvs in the CAR construct. The secreted BiTEs could promote the cytotoxicity of untransduced T cells against NKG2DL + tumor cells. In vitro, BiTEs CAR-T cells exhibited superior cytotoxicity, T cell activation, and cytokines production against heterogeneous target cells compared to MSLN CAR-T. In vivo, BiTEs CAR-T cells demonstrated potent antitumor activity in zebrafish and murine TNBC models, significantly reducing tumor burden and prolonging survival without detectable toxicity. These findings suggest that BiTE CAR-T cells offer a highly promising therapeutic strategy for TNBC by addressing antigen heterogeneity and immune escape mechanisms, with promising translational potential for clinical application.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"14 1","pages":"27"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-025-00621-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with poor prognosis and limited treatment options. Chimeric antigen receptor (CAR)-T cell therapy holds promise, but its efficacy is hindered by tumor antigen escape and heterogeneity. To address these challenges, we developed a novel bispecific T cell engagers CAR-T (BiTEs CAR-T) targeting Mesothelin (MSLN) and secreting NKG2D-Bispecific T cell Engagers (BiTEs) to engage NKG2D ligands (NKG2DL). Analysis of TNBC tissues using The Cancer Genome Atlas and tumor microarrays revealed high but weakly correlated expression of MSLN and NKG2DL, making them ideal targets for dual engagement. To reduce immunogenicity and enhance stability, we used a nanobody and the natural receptor NKG2D as antigen-binding domains instead of traditional scFvs in the CAR construct. The secreted BiTEs could promote the cytotoxicity of untransduced T cells against NKG2DL + tumor cells. In vitro, BiTEs CAR-T cells exhibited superior cytotoxicity, T cell activation, and cytokines production against heterogeneous target cells compared to MSLN CAR-T. In vivo, BiTEs CAR-T cells demonstrated potent antitumor activity in zebrafish and murine TNBC models, significantly reducing tumor burden and prolonging survival without detectable toxicity. These findings suggest that BiTE CAR-T cells offer a highly promising therapeutic strategy for TNBC by addressing antigen heterogeneity and immune escape mechanisms, with promising translational potential for clinical application.
期刊介绍:
Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings.
Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.