CD28 is superior to 4-1BB costimulation in generating CAR-NK cells for tumor immunotherapy.

IF 9.4 1区 医学 Q1 HEMATOLOGY
Pengchao Zhang, Xuejia Feng, Xiangyun Niu, Zhongming Liu, Minghui Li, Maoxuan Liu, Dehong Yan, Guizhong Zhang, Xiaochun Wan
{"title":"CD28 is superior to 4-1BB costimulation in generating CAR-NK cells for tumor immunotherapy.","authors":"Pengchao Zhang, Xuejia Feng, Xiangyun Niu, Zhongming Liu, Minghui Li, Maoxuan Liu, Dehong Yan, Guizhong Zhang, Xiaochun Wan","doi":"10.1186/s40164-025-00618-7","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR)-NK therapy holds great potential for tumor treatment, but current CAR designs are primarily optimized for T cells, raising concerns about their suitability for NK cells. This study compared two dominant CAR designs used in T cells-CD28-CD3ζ (28z) and 4-1BB-CD3ζ (BBz)-and found that CD28 costimulation offers superior functionality in NK cells. 28z CAR-NK cells exhibited significantly better activation, cytotoxicity, and in vivo anti-tumor efficacy than BBz CAR-NK cells, with similar persistence and tumor infiltration. 28z CAR more effectively recruited the ZAP70 kinase and upregulated multiple key factors involved in immune activation, potentially augmenting CAR-NK cell function. MAP3K8, a kinase involved in inflammation and the MAPK signaling pathway, was identified as a critical mediator in enhancing 28z CAR-NK cell function. Silencing or inhibiting MAP3K8 impaired the anti-tumor activity of 28z CAR-NK cells, while its overexpression substantially improved the function of BBz CAR-NK cells. These findings provide new insights into how CD28 costimulation boosts CAR-NK cell efficacy, supporting its use into NK cell-specific CARs for cancer immunotherapy, and highlight MAP3K8 as a potential target for optimizing BBz CAR-NK cell therapy.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"14 1","pages":"28"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-025-00618-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chimeric antigen receptor (CAR)-NK therapy holds great potential for tumor treatment, but current CAR designs are primarily optimized for T cells, raising concerns about their suitability for NK cells. This study compared two dominant CAR designs used in T cells-CD28-CD3ζ (28z) and 4-1BB-CD3ζ (BBz)-and found that CD28 costimulation offers superior functionality in NK cells. 28z CAR-NK cells exhibited significantly better activation, cytotoxicity, and in vivo anti-tumor efficacy than BBz CAR-NK cells, with similar persistence and tumor infiltration. 28z CAR more effectively recruited the ZAP70 kinase and upregulated multiple key factors involved in immune activation, potentially augmenting CAR-NK cell function. MAP3K8, a kinase involved in inflammation and the MAPK signaling pathway, was identified as a critical mediator in enhancing 28z CAR-NK cell function. Silencing or inhibiting MAP3K8 impaired the anti-tumor activity of 28z CAR-NK cells, while its overexpression substantially improved the function of BBz CAR-NK cells. These findings provide new insights into how CD28 costimulation boosts CAR-NK cell efficacy, supporting its use into NK cell-specific CARs for cancer immunotherapy, and highlight MAP3K8 as a potential target for optimizing BBz CAR-NK cell therapy.

CD28在产生CAR-NK细胞用于肿瘤免疫治疗方面优于4-1BB共刺激。
嵌合抗原受体(CAR)-NK疗法在肿瘤治疗中具有巨大的潜力,但目前的CAR设计主要针对T细胞进行了优化,这引起了人们对其对NK细胞适用性的担忧。这项研究比较了T细胞中使用的两种主要CAR设计-CD28- cd3 ζ (28z)和4-1BB-CD3ζ (BBz)-并发现CD28共刺激在NK细胞中提供了优越的功能。28z CAR-NK细胞具有明显优于BBz CAR-NK细胞的活化、细胞毒性和体内抗肿瘤作用,其持久性和肿瘤浸润性相似。28z CAR更有效地募集了ZAP70激酶,上调了参与免疫激活的多个关键因子,潜在地增强了CAR- nk细胞的功能。MAP3K8是一种参与炎症和MAPK信号通路的激酶,被认为是增强28z CAR-NK细胞功能的关键介质。沉默或抑制MAP3K8会削弱28z CAR-NK细胞的抗肿瘤活性,而过表达MAP3K8则会显著提高BBz CAR-NK细胞的功能。这些发现为CD28共刺激如何提高CAR-NK细胞疗效提供了新的见解,支持其用于NK细胞特异性CAR-NK细胞用于癌症免疫治疗,并突出了MAP3K8作为优化BBz CAR-NK细胞治疗的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
7.30%
发文量
97
审稿时长
6 weeks
期刊介绍: Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings. Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信