Methionine is an essential amino acid in doxorubicin-induced cardiotoxicity through modulating mitophagy

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yijun Xin , Yong Zhang , Zhaoji Yuan , Siying Li
{"title":"Methionine is an essential amino acid in doxorubicin-induced cardiotoxicity through modulating mitophagy","authors":"Yijun Xin ,&nbsp;Yong Zhang ,&nbsp;Zhaoji Yuan ,&nbsp;Siying Li","doi":"10.1016/j.freeradbiomed.2025.02.044","DOIUrl":null,"url":null,"abstract":"<div><div>Doxorubicin (Dox) is a widely used anticancer drug. However, its time- and dose-dependent side effects, particularly severe cardiotoxicity, limit its clinical use. Understanding the molecular mechanisms underlying Dox-induced cardiotoxicity has become a research focus in recent years. Among these, impaired mitophagy which participated in the process of damaged mitochondria clearance, is considered one of the key mechanisms in Dox-induced cardiomyopathy. Methionine (Met) is an essential amino acid that plays a crucial role in various biological processes. This study aims to investigate the role and mechanism of Met in regulating mitophagy in Dox-induced cardiotoxicity. Met deficiency exacerbated Dox-induced cardiotoxicity, primarily by promoting oxidative stress, affecting mitochondria integrity, disrupting autophagy, and thus leading to cardiomyocyte damage and aggravating heart failure. In addition, Met supplementation alleviated Dox-induced cardiotoxicity, via the general control nonderepessible 2 (GCN2) pathway. This study extends our understanding of the relationship between amino acid metabolism and Dox-induced cardiotoxicity, and indicating the Met-GCN2 axis as a promising therapeutic strategy for Dox-induced cardiotoxicity.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"232 ","pages":"Pages 28-39"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584925001273","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Doxorubicin (Dox) is a widely used anticancer drug. However, its time- and dose-dependent side effects, particularly severe cardiotoxicity, limit its clinical use. Understanding the molecular mechanisms underlying Dox-induced cardiotoxicity has become a research focus in recent years. Among these, impaired mitophagy which participated in the process of damaged mitochondria clearance, is considered one of the key mechanisms in Dox-induced cardiomyopathy. Methionine (Met) is an essential amino acid that plays a crucial role in various biological processes. This study aims to investigate the role and mechanism of Met in regulating mitophagy in Dox-induced cardiotoxicity. Met deficiency exacerbated Dox-induced cardiotoxicity, primarily by promoting oxidative stress, affecting mitochondria integrity, disrupting autophagy, and thus leading to cardiomyocyte damage and aggravating heart failure. In addition, Met supplementation alleviated Dox-induced cardiotoxicity, via the general control nonderepessible 2 (GCN2) pathway. This study extends our understanding of the relationship between amino acid metabolism and Dox-induced cardiotoxicity, and indicating the Met-GCN2 axis as a promising therapeutic strategy for Dox-induced cardiotoxicity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信