{"title":"Deciphering the Iron Metabolism and Ferroptosis in Diabetic Wound Healing.","authors":"Yashi Feng, Yunchang Cao, Yun Ou-Yang, Wuxiang Wang, Shaolong Feng","doi":"10.2174/0115733998352547250107065356","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic-related complications, such as delayed and incomplete wound healing, are an increasing concern in the realm of public health. Ferroptosis represents an innovative variant of cellular demise. Ferroptosis is currently thought to be an essential factor in the process of diabetic wound recovery. This article, therefore, examines the novel function and mechanism of ferroptosis in the repair of diabetic wounds. Diabetic hyperglycemia can induce a healing process that disrupts the function and activity of cells, thereby impeding the repair of diabetic wounds. Ferroptosis may be accelerated in diabetic lesions due to protracted low-level inflammation and oxidative stress induced by elevated glucose, according to the available evidence. As a result, the buildup of ferroptosis impedes cellular migration and proliferation, amplifies oxidative stress and the inflammatory response, and ultimately interferes with the wound-healing process. By regulating the expression of factors linked to iron mortality, this substance expedites wound healing and fosters angiogenesis in diabetic rodents. Moreover, new perspectives on the difficulties and outlooks related to ferroptosis in the context of diabetic wound healing are provided, thereby contributing to the progression of understanding in this field.</p>","PeriodicalId":10825,"journal":{"name":"Current diabetes reviews","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current diabetes reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115733998352547250107065356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic-related complications, such as delayed and incomplete wound healing, are an increasing concern in the realm of public health. Ferroptosis represents an innovative variant of cellular demise. Ferroptosis is currently thought to be an essential factor in the process of diabetic wound recovery. This article, therefore, examines the novel function and mechanism of ferroptosis in the repair of diabetic wounds. Diabetic hyperglycemia can induce a healing process that disrupts the function and activity of cells, thereby impeding the repair of diabetic wounds. Ferroptosis may be accelerated in diabetic lesions due to protracted low-level inflammation and oxidative stress induced by elevated glucose, according to the available evidence. As a result, the buildup of ferroptosis impedes cellular migration and proliferation, amplifies oxidative stress and the inflammatory response, and ultimately interferes with the wound-healing process. By regulating the expression of factors linked to iron mortality, this substance expedites wound healing and fosters angiogenesis in diabetic rodents. Moreover, new perspectives on the difficulties and outlooks related to ferroptosis in the context of diabetic wound healing are provided, thereby contributing to the progression of understanding in this field.
期刊介绍:
Current Diabetes Reviews publishes frontier reviews on all the latest advances on diabetes and its related areas e.g. pharmacology, pathogenesis, complications, epidemiology, clinical care, and therapy. The journal"s aim is to publish the highest quality review articles dedicated to clinical research in the field. The journal is essential reading for all researchers and clinicians who are involved in the field of diabetes.