Yuanming Song, Zhaoxu Li, Justin Mulvey, J Alfredo Freites, Joseph Patterson, Douglas J Tobias
{"title":"Cryo-EM Informed Molecular Dynamics Simulations to Investigate the Disulfide Hydrogel Self-Assembly.","authors":"Yuanming Song, Zhaoxu Li, Justin Mulvey, J Alfredo Freites, Joseph Patterson, Douglas J Tobias","doi":"10.1002/cphc.202401085","DOIUrl":null,"url":null,"abstract":"<p><p>Disulfide hydrogels, derived from cysteine-based redox systems, exhibit active self-assembly properties driven by reversible disulfide bond formation, making them a versatile platform for dynamic material design. Detailed cryogenic electron microscopy (cryo-EM) analysis revealed a consistent fiber diameter of 5.4 nm for individual fibers. Using cryo-EM-informed radial positional restraints, all-atom molecular dynamics (MD) simulations were employed to reproduce fibers with dimensions closely matching experimental observations, validated further through simulated cryo-EM images. The MD simulations revealed that the disulfide gelator (CSSC) predominantly adopts an open conformation, with hydrogen bonds emerging as the key intermolecular force stabilizing the fibers. Notably, intermolecular interactions were found to be higher at 70\\% conversion to the disulfide gelator compared to 100\\%, comparable with past unrestrained simulations. Water molecules and solute-water hydrogen bonds are present throughout the fiber, indicating that the fiber remains hydrated. These findings underscore the potential role of the thiol precursor CSH in stabilizing the transient phase and highlight the importance of CSH-CSSC interplay. This study provides novel insights into molecular mechanisms governing self-assembly and offers strategies for designing tunable materials through controlled assembly conditions.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202401085"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202401085","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Disulfide hydrogels, derived from cysteine-based redox systems, exhibit active self-assembly properties driven by reversible disulfide bond formation, making them a versatile platform for dynamic material design. Detailed cryogenic electron microscopy (cryo-EM) analysis revealed a consistent fiber diameter of 5.4 nm for individual fibers. Using cryo-EM-informed radial positional restraints, all-atom molecular dynamics (MD) simulations were employed to reproduce fibers with dimensions closely matching experimental observations, validated further through simulated cryo-EM images. The MD simulations revealed that the disulfide gelator (CSSC) predominantly adopts an open conformation, with hydrogen bonds emerging as the key intermolecular force stabilizing the fibers. Notably, intermolecular interactions were found to be higher at 70\% conversion to the disulfide gelator compared to 100\%, comparable with past unrestrained simulations. Water molecules and solute-water hydrogen bonds are present throughout the fiber, indicating that the fiber remains hydrated. These findings underscore the potential role of the thiol precursor CSH in stabilizing the transient phase and highlight the importance of CSH-CSSC interplay. This study provides novel insights into molecular mechanisms governing self-assembly and offers strategies for designing tunable materials through controlled assembly conditions.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.