Systematic mining and quantification reveal the dominant contribution of non-HLA variations to acute graft-versus-host disease.

IF 21.8 1区 医学 Q1 IMMUNOLOGY
Shuang Liang, Yu-Jian Kang, Mingrui Huo, De-Chang Yang, Min Ling, Keli Yue, Yu Wang, Lan-Ping Xu, Xiao-Hui Zhang, Chen-Rui Xia, Jing-Yi Li, Ning Wu, Ruoyang Liu, Xinyu Dong, Jiangying Liu, Ge Gao, Xiao-Jun Huang
{"title":"Systematic mining and quantification reveal the dominant contribution of non-HLA variations to acute graft-versus-host disease.","authors":"Shuang Liang, Yu-Jian Kang, Mingrui Huo, De-Chang Yang, Min Ling, Keli Yue, Yu Wang, Lan-Ping Xu, Xiao-Hui Zhang, Chen-Rui Xia, Jing-Yi Li, Ning Wu, Ruoyang Liu, Xinyu Dong, Jiangying Liu, Ge Gao, Xiao-Jun Huang","doi":"10.1038/s41423-025-01273-y","DOIUrl":null,"url":null,"abstract":"<p><p>Human leukocyte antigen (HLA) disparity between donors and recipients is a key determinant triggering intense alloreactivity, leading to a lethal complication, namely, acute graft-versus-host disease (aGVHD), after allogeneic transplantation. Moreover, aGVHD remains a cause of mortality after HLA-matched allogeneic transplantation. Protocols for HLA-haploidentical hematopoietic cell transplantation (haploHCT) have been established successfully and widely applied, further highlighting the urgency of performing panoramic screening of non-HLA variations correlated with aGVHD. On the basis of our time-consecutive large haploHCT cohort (with a homogenous discovery set and an extended confirmatory set), we first delineated the genetic landscape of 1366 samples to quantitatively model aGVHD risk by assessing the contributions of HLA and non-HLA genes together with clinical factors. In addition to identifying multiple loss-of-function (LoF) risk variations in non-HLA coding genes, our data-driven study revealed that non-HLA genetic variations, independent of HLA disparity, contributed the most to the occurrence of aGVHD. This unexpected major effect was verified in an independent cohort that received HLA-identical sibling HCT. Subsequent functional experiments further revealed the roles of a representative non-HLA LoF gene and LoF gene pair in regulating the alloreactivity of primary human T cells. Our findings highlight the importance of non-HLA genetic risk in the new era of transplantation and propose a new direction to explore the immunogenetic mechanism of alloreactivity and to optimize donor selection strategies for allogeneic transplantation.</p>","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":" ","pages":""},"PeriodicalIF":21.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular &Molecular Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41423-025-01273-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human leukocyte antigen (HLA) disparity between donors and recipients is a key determinant triggering intense alloreactivity, leading to a lethal complication, namely, acute graft-versus-host disease (aGVHD), after allogeneic transplantation. Moreover, aGVHD remains a cause of mortality after HLA-matched allogeneic transplantation. Protocols for HLA-haploidentical hematopoietic cell transplantation (haploHCT) have been established successfully and widely applied, further highlighting the urgency of performing panoramic screening of non-HLA variations correlated with aGVHD. On the basis of our time-consecutive large haploHCT cohort (with a homogenous discovery set and an extended confirmatory set), we first delineated the genetic landscape of 1366 samples to quantitatively model aGVHD risk by assessing the contributions of HLA and non-HLA genes together with clinical factors. In addition to identifying multiple loss-of-function (LoF) risk variations in non-HLA coding genes, our data-driven study revealed that non-HLA genetic variations, independent of HLA disparity, contributed the most to the occurrence of aGVHD. This unexpected major effect was verified in an independent cohort that received HLA-identical sibling HCT. Subsequent functional experiments further revealed the roles of a representative non-HLA LoF gene and LoF gene pair in regulating the alloreactivity of primary human T cells. Our findings highlight the importance of non-HLA genetic risk in the new era of transplantation and propose a new direction to explore the immunogenetic mechanism of alloreactivity and to optimize donor selection strategies for allogeneic transplantation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
31.20
自引率
1.20%
发文量
903
审稿时长
1 months
期刊介绍: Cellular & Molecular Immunology, a monthly journal from the Chinese Society of Immunology and the University of Science and Technology of China, serves as a comprehensive platform covering both basic immunology research and clinical applications. The journal publishes a variety of article types, including Articles, Review Articles, Mini Reviews, and Short Communications, focusing on diverse aspects of cellular and molecular immunology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信