Explainable machine learning model for predicting acute pancreatitis mortality in the intensive care unit.

IF 2.5 3区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY
Meng Jiang, Xiao-Peng Wu, Xing-Chen Lin, Chang-Li Li
{"title":"Explainable machine learning model for predicting acute pancreatitis mortality in the intensive care unit.","authors":"Meng Jiang, Xiao-Peng Wu, Xing-Chen Lin, Chang-Li Li","doi":"10.1186/s12876-025-03723-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Current prediction models are suboptimal for determining mortality risk in patients with acute pancreatitis (AP); this might be improved by using a machine learning (ML) model. In this study, we aimed to construct an explainable ML model to calculate the risk of mortality in patients with AP admitted in intensive care unit (ICU) and compared it with existing scoring systems.</p><p><strong>Methods: </strong>A gradient-boosting ML (XGBoost) model was developed and externally validated based on two public databases: Medical Information Mart for Intensive Care (MIMIC, training cohort) and the eICU Collaborative Research Database (eICU-CRD, validation cohort). We compared the performance of the XGBoost model with validated clinical risk scoring systems (the APACHE IV, SOFA, and Bedside Index for Severity in Acute Pancreatitis [BISAP]) by area under receiver operating characteristic curve (AUC) analysis. SHAP (SHapley Additive exPlanations) method was applied to provide the explanation behind the prediction outcome.</p><p><strong>Results: </strong>The XGBoost model performed better than the clinical scoring systems in correctly predicting mortality risk of AP patients, achieving an AUC of 0.89 (95% CI: 0.84-0.94). When set the sensitivity at 100% for death prediction, the model had a specificity of 38%, much higher than the APACHE IV, SOFA and BISAP score, which had a specificity of 1%, 16% and 1% respectively.</p><p><strong>Conclusions: </strong>This model might increase identification of very low-risk patients who can be safely monitored in a general ward for management. By making the model explainable, physicians would be able to better understand the reasoning behind the prediction.</p>","PeriodicalId":9129,"journal":{"name":"BMC Gastroenterology","volume":"25 1","pages":"131"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877909/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12876-025-03723-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Current prediction models are suboptimal for determining mortality risk in patients with acute pancreatitis (AP); this might be improved by using a machine learning (ML) model. In this study, we aimed to construct an explainable ML model to calculate the risk of mortality in patients with AP admitted in intensive care unit (ICU) and compared it with existing scoring systems.

Methods: A gradient-boosting ML (XGBoost) model was developed and externally validated based on two public databases: Medical Information Mart for Intensive Care (MIMIC, training cohort) and the eICU Collaborative Research Database (eICU-CRD, validation cohort). We compared the performance of the XGBoost model with validated clinical risk scoring systems (the APACHE IV, SOFA, and Bedside Index for Severity in Acute Pancreatitis [BISAP]) by area under receiver operating characteristic curve (AUC) analysis. SHAP (SHapley Additive exPlanations) method was applied to provide the explanation behind the prediction outcome.

Results: The XGBoost model performed better than the clinical scoring systems in correctly predicting mortality risk of AP patients, achieving an AUC of 0.89 (95% CI: 0.84-0.94). When set the sensitivity at 100% for death prediction, the model had a specificity of 38%, much higher than the APACHE IV, SOFA and BISAP score, which had a specificity of 1%, 16% and 1% respectively.

Conclusions: This model might increase identification of very low-risk patients who can be safely monitored in a general ward for management. By making the model explainable, physicians would be able to better understand the reasoning behind the prediction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Gastroenterology
BMC Gastroenterology 医学-胃肠肝病学
CiteScore
4.20
自引率
0.00%
发文量
465
审稿时长
6 months
期刊介绍: BMC Gastroenterology is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of gastrointestinal and hepatobiliary disorders, as well as related molecular genetics, pathophysiology, and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信