Liam M Jones, Maria Salta, Torben Lund Skovhus, Kathryn Thomas, Timothy Illson, Julian Wharton, Jeremy S Webb
{"title":"Toward simulating offshore oilfield conditions: insights into microbiologically influenced corrosion from a dual anaerobic biofilm reactor.","authors":"Liam M Jones, Maria Salta, Torben Lund Skovhus, Kathryn Thomas, Timothy Illson, Julian Wharton, Jeremy S Webb","doi":"10.1128/aem.02221-24","DOIUrl":null,"url":null,"abstract":"<p><p>Oilfield systems are a multifaceted ecological niche, which consistently experiences microbiologically influenced corrosion. However, simulating the environmental conditions of an offshore system within the laboratory is notoriously difficult. A novel dual anaerobic biofilm reactor protocol allowed a complex mixed-species marine biofilm to be studied. Interestingly, electroactive corrosive bacteria and fermentative electroactive bacteria growth was supported within the biofilm microenvironment. Critically, the biotic condition exhibited pits with a greater average area, which is characteristic of microbiologically influenced corrosion. This research seeks to bridge the gap between experimental and real-world scenarios, ultimately enhancing the reliability of biofilm management strategies in the industry.</p><p><strong>Importance: </strong>It is becoming more widely understood that any investigation of microbiologically influenced corrosion requires a multidisciplinary focus on multiple lines of evidence. Although there are numerous standards available to guide specific types of testing, there are none that focus on integrating biofilm testing. By developing a novel dual anaerobic reactor model to study biofilms, insights into the different abiotic and biotic corrosion mechanisms under relevant environmental conditions can be gained. Using multiple lines of evidence to gain a holistic understanding, more sustainable prevention and mitigation strategies can be designed. To our knowledge, this is the first time all these metrics have been combined in one unified approach. The overall aim of this paper was to explore recent advances in biofilm testing and corrosion research and provide recommendations for future standards being drafted. However, it is important to note that this article itself is not intending to serve as a standard.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0222124"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.02221-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oilfield systems are a multifaceted ecological niche, which consistently experiences microbiologically influenced corrosion. However, simulating the environmental conditions of an offshore system within the laboratory is notoriously difficult. A novel dual anaerobic biofilm reactor protocol allowed a complex mixed-species marine biofilm to be studied. Interestingly, electroactive corrosive bacteria and fermentative electroactive bacteria growth was supported within the biofilm microenvironment. Critically, the biotic condition exhibited pits with a greater average area, which is characteristic of microbiologically influenced corrosion. This research seeks to bridge the gap between experimental and real-world scenarios, ultimately enhancing the reliability of biofilm management strategies in the industry.
Importance: It is becoming more widely understood that any investigation of microbiologically influenced corrosion requires a multidisciplinary focus on multiple lines of evidence. Although there are numerous standards available to guide specific types of testing, there are none that focus on integrating biofilm testing. By developing a novel dual anaerobic reactor model to study biofilms, insights into the different abiotic and biotic corrosion mechanisms under relevant environmental conditions can be gained. Using multiple lines of evidence to gain a holistic understanding, more sustainable prevention and mitigation strategies can be designed. To our knowledge, this is the first time all these metrics have been combined in one unified approach. The overall aim of this paper was to explore recent advances in biofilm testing and corrosion research and provide recommendations for future standards being drafted. However, it is important to note that this article itself is not intending to serve as a standard.
期刊介绍:
Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.