Song Gao, GuoFu Zhang, Yue Zhao, XiaoHui Yu, JianWei Sun
{"title":"The Extension Arm Design Method Based on a Two-Bar Tension Stretchable Mechanism.","authors":"Song Gao, GuoFu Zhang, Yue Zhao, XiaoHui Yu, JianWei Sun","doi":"10.1155/abb/3313533","DOIUrl":null,"url":null,"abstract":"<p><p>The deployable and foldable structure is a unique structural system that provides convenience in terms of transportation and expansion. Although the current deployable mast can transition between closed and extended structures, it lacks stability during movement and does not have the ability to recover on its own after contracting. Hence, improving the stability of deployable mechanisms while enabling them to self-restore has become an essential area for development. Spatial deployable mast expansion and contraction properties are essential for aerospace. In this paper, based on a two-bar and four-cable tensegrity structure, the research was conducted. A new spatially deployable mast structure with zero Poisson's ratio and self-stability, as well as self-adaptability, is proposed. In comparison to existing space deployable masts, the new deployable masts incorporate a tensegrity structure feature that enables them to recover autonomously to their initial state in a contracted state. Firstly, an innovative design based on a two-bar, four-cord tensegrity structure is conducted, which evolves into a two-bar and four-cable tensegrity structure with zero Poisson's ratio by increasing the longitudinal axis to restrict the structure's degrees of freedom and combines with the force density method to analyze the stability of the structure and derive the optimal dimensional parameters. The positive definiteness of the stiffness matrix <i>Q</i> (<i>K</i>) demonstrates the exceptional stability of the mechanism. Secondly, the load-bearing characteristics of the mechanism were verified utilizing ABAQUS (DS, France) software. Besides, the minimum compressive stiffness of the new space deployable mast for locking three rails compared to locking one rail is 12 × 10<sup>8</sup> N/m, as derived from ABAQUS (DS, France) analysis. Ultimately, a prototype was developed through the application of three-dimensional (3D) printing technology. The force-strain experiment was conducted using both a pressure testing machine and a universal testing machine, and the resulting images demonstrated the findings. The experimental results demonstrate that the novel deployable mast structure has self-recovering and self-stabilizing capabilities. This research pushes the frontiers of deployable mast multifunctionality as well as significantly expands the application domain of tensegrity structures to the aerospace sector.</p>","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":"2025 ","pages":"3313533"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871976/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Bionics and Biomechanics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/abb/3313533","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The deployable and foldable structure is a unique structural system that provides convenience in terms of transportation and expansion. Although the current deployable mast can transition between closed and extended structures, it lacks stability during movement and does not have the ability to recover on its own after contracting. Hence, improving the stability of deployable mechanisms while enabling them to self-restore has become an essential area for development. Spatial deployable mast expansion and contraction properties are essential for aerospace. In this paper, based on a two-bar and four-cable tensegrity structure, the research was conducted. A new spatially deployable mast structure with zero Poisson's ratio and self-stability, as well as self-adaptability, is proposed. In comparison to existing space deployable masts, the new deployable masts incorporate a tensegrity structure feature that enables them to recover autonomously to their initial state in a contracted state. Firstly, an innovative design based on a two-bar, four-cord tensegrity structure is conducted, which evolves into a two-bar and four-cable tensegrity structure with zero Poisson's ratio by increasing the longitudinal axis to restrict the structure's degrees of freedom and combines with the force density method to analyze the stability of the structure and derive the optimal dimensional parameters. The positive definiteness of the stiffness matrix Q (K) demonstrates the exceptional stability of the mechanism. Secondly, the load-bearing characteristics of the mechanism were verified utilizing ABAQUS (DS, France) software. Besides, the minimum compressive stiffness of the new space deployable mast for locking three rails compared to locking one rail is 12 × 108 N/m, as derived from ABAQUS (DS, France) analysis. Ultimately, a prototype was developed through the application of three-dimensional (3D) printing technology. The force-strain experiment was conducted using both a pressure testing machine and a universal testing machine, and the resulting images demonstrated the findings. The experimental results demonstrate that the novel deployable mast structure has self-recovering and self-stabilizing capabilities. This research pushes the frontiers of deployable mast multifunctionality as well as significantly expands the application domain of tensegrity structures to the aerospace sector.
期刊介绍:
Applied Bionics and Biomechanics publishes papers that seek to understand the mechanics of biological systems, or that use the functions of living organisms as inspiration for the design new devices. Such systems may be used as artificial replacements, or aids, for their original biological purpose, or be used in a different setting altogether.