Transport of continental particulate over the Labrador Sea and entrainment are important pathways for glaciation of remote marine clouds.

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Hugh Coe, Huihui Wu, Nicholas Marsden, Michael Biggart, Keith N Bower, Tom Choularton, Michael Flynn, Martin W Gallagher, Kezhen Hu, Gary Lloyd, Graeme J Nott, Paul F Field, Benjamin J Murray
{"title":"Transport of continental particulate over the Labrador Sea and entrainment are important pathways for glaciation of remote marine clouds.","authors":"Hugh Coe, Huihui Wu, Nicholas Marsden, Michael Biggart, Keith N Bower, Tom Choularton, Michael Flynn, Martin W Gallagher, Kezhen Hu, Gary Lloyd, Graeme J Nott, Paul F Field, Benjamin J Murray","doi":"10.1039/d5fd00005j","DOIUrl":null,"url":null,"abstract":"<p><p>Marine Arctic clouds greatly influence the radiative balance across the Arctic region and their effectiveness at scattering radiation changes considerably depending on cloud phase. Glaciation of these clouds relies on the presence of ice nucleating particles, which are often limited in number, so often clouds may be liquid even at temperatures well below 0 °C. As the Arctic region warms, cloud feedbacks may accelerate change or lessen absorbed solar radiation. Understanding aerosol-cloud interactions and the sources and pathways of aerosol particles across the Arctic region is central to improving our knowledge of these poorly understood processes. In this paper, aircraft observations of single particle chemical and physical properties are presented and the composition of cloud residuals in both warm and glaciated clouds are examined using a single-particle laser ablation aerosol particle mass spectrometer (LAAPToF). In cloud, the LAAPToF sampled behind a Counterflow Virtual Impactor (CVI) to detect cloud particle residuals, separated into liquid, mixed phase and ice clouds using <i>in situ</i> observations of the fractional ice water content. Three different air mass regimes were sampled: northerly winds in both the marine boundary layer and the lower free troposphere; westerly winds from Canada in both the marine boundary layer and the free troposphere; and periods when the boundary layer winds were northerly but the air immediately above the boundary layer was from continental Canada. When the air in the boundary layer and free troposphere was from the north, most clouds were in the liquid phase, however, considerably more glaciation was observed when the air immediately above the boundary layer clouds was from Canada regardless of the flow direction in the boundary layer. Sea salt particles dominate the observed out of cloud aerosol particle population and liquid cloud particle residuals. However, in the detected mixed phase and ice cloud particle residuals dust and bioaerosol particles were substantial in number. Since these are known to be effective ice-nucleating particles, the observations suggest that long range transport of continental air and entrainment is an important pathway for the supply of aerosol to the remote Arctic boundary layer.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5fd00005j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Marine Arctic clouds greatly influence the radiative balance across the Arctic region and their effectiveness at scattering radiation changes considerably depending on cloud phase. Glaciation of these clouds relies on the presence of ice nucleating particles, which are often limited in number, so often clouds may be liquid even at temperatures well below 0 °C. As the Arctic region warms, cloud feedbacks may accelerate change or lessen absorbed solar radiation. Understanding aerosol-cloud interactions and the sources and pathways of aerosol particles across the Arctic region is central to improving our knowledge of these poorly understood processes. In this paper, aircraft observations of single particle chemical and physical properties are presented and the composition of cloud residuals in both warm and glaciated clouds are examined using a single-particle laser ablation aerosol particle mass spectrometer (LAAPToF). In cloud, the LAAPToF sampled behind a Counterflow Virtual Impactor (CVI) to detect cloud particle residuals, separated into liquid, mixed phase and ice clouds using in situ observations of the fractional ice water content. Three different air mass regimes were sampled: northerly winds in both the marine boundary layer and the lower free troposphere; westerly winds from Canada in both the marine boundary layer and the free troposphere; and periods when the boundary layer winds were northerly but the air immediately above the boundary layer was from continental Canada. When the air in the boundary layer and free troposphere was from the north, most clouds were in the liquid phase, however, considerably more glaciation was observed when the air immediately above the boundary layer clouds was from Canada regardless of the flow direction in the boundary layer. Sea salt particles dominate the observed out of cloud aerosol particle population and liquid cloud particle residuals. However, in the detected mixed phase and ice cloud particle residuals dust and bioaerosol particles were substantial in number. Since these are known to be effective ice-nucleating particles, the observations suggest that long range transport of continental air and entrainment is an important pathway for the supply of aerosol to the remote Arctic boundary layer.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信