Aβ40 Fibril Assembly on Human Cerebral Smooth Muscle Cells Impairs Cell Viability.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biochemistry Biochemistry Pub Date : 2025-03-04 Epub Date: 2025-01-06 DOI:10.1021/acs.biochem.4c00478
Brandon Irizarry, Judianne Davis, Jitika Rajpoot, Xiaoyue Zhu, Feng Xu, Steven O Smith, William E Van Nostrand
{"title":"Aβ40 Fibril Assembly on Human Cerebral Smooth Muscle Cells Impairs Cell Viability.","authors":"Brandon Irizarry, Judianne Davis, Jitika Rajpoot, Xiaoyue Zhu, Feng Xu, Steven O Smith, William E Van Nostrand","doi":"10.1021/acs.biochem.4c00478","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral vascular deposition of the amyloid-β (Aβ) peptide, a condition known as cerebral amyloid angiopathy (CAA), is associated with intracerebral hemorrhaging and contributes to disease progression in Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID). Familial mutations at positions 22 and 23 within the Aβ peptide lead to early onset and severe CAA pathology. Here, we evaluate the effects of fibrillar Aβ peptides on the viability of primary-cultured human cerebral smooth muscle (HCSM) cells, which are the major site of amyloid deposition in cerebral blood vessel walls. Comparisons are made of the familial E22Q (Dutch) mutant of Aβ40 with wild-type Aβ40 and Aβ42. In agreement with previous studies, we find that there is a significant reduction in cell viability when Aβ40-Dutch or Aβ42-WT peptides are added to HCSM cell cultures as monomeric Aβ, whereas Aβ40-WT is relatively nontoxic. The binding of Aβ fibrils derived from sporadic CAA or familial Dutch-type CAA brain tissue to the membrane surface of HCSM cells does not result in a significant loss of cell viability. In contrast, when Aβ40-WT monomers and sporadic CAA fibrils are coincubated in HCSM cell cultures, there is a significant reduction in HCSM cell viability that is accompanied by an increase in cell surface fibril formation. Lastly, intrathecal administration of Aβ40-Dutch fibrillar seeds promotes fibrillar amyloid accumulation in the smooth muscle of meningeal vessels in the rTg-D transgenic rat model of CAA. Together, the present findings suggest that fibrillar Aβ seeds propagate the expansion of new amyloid fibrils on cerebral vascular smooth muscle, leading to membrane disruption and cell death.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":"64 5","pages":"1065-1078"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00478","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cerebral vascular deposition of the amyloid-β (Aβ) peptide, a condition known as cerebral amyloid angiopathy (CAA), is associated with intracerebral hemorrhaging and contributes to disease progression in Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID). Familial mutations at positions 22 and 23 within the Aβ peptide lead to early onset and severe CAA pathology. Here, we evaluate the effects of fibrillar Aβ peptides on the viability of primary-cultured human cerebral smooth muscle (HCSM) cells, which are the major site of amyloid deposition in cerebral blood vessel walls. Comparisons are made of the familial E22Q (Dutch) mutant of Aβ40 with wild-type Aβ40 and Aβ42. In agreement with previous studies, we find that there is a significant reduction in cell viability when Aβ40-Dutch or Aβ42-WT peptides are added to HCSM cell cultures as monomeric Aβ, whereas Aβ40-WT is relatively nontoxic. The binding of Aβ fibrils derived from sporadic CAA or familial Dutch-type CAA brain tissue to the membrane surface of HCSM cells does not result in a significant loss of cell viability. In contrast, when Aβ40-WT monomers and sporadic CAA fibrils are coincubated in HCSM cell cultures, there is a significant reduction in HCSM cell viability that is accompanied by an increase in cell surface fibril formation. Lastly, intrathecal administration of Aβ40-Dutch fibrillar seeds promotes fibrillar amyloid accumulation in the smooth muscle of meningeal vessels in the rTg-D transgenic rat model of CAA. Together, the present findings suggest that fibrillar Aβ seeds propagate the expansion of new amyloid fibrils on cerebral vascular smooth muscle, leading to membrane disruption and cell death.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信