{"title":"The vanishing of the non-linear static love number of Kerr black holes and the role of symmetries","authors":"L.-R. Gounis, A. Kehagias and A. Riotto","doi":"10.1088/1475-7516/2025/03/002","DOIUrl":null,"url":null,"abstract":"We investigate the tidal response of Kerr black holes in four-dimensional spacetimes subjected to external gravitational fields. Using the Ernst formalism and Weyl coordinates, we analyze the non-linear tidal deformation of rotating black holes and demonstrate that their static tidal Love numbers vanish at all orders of the external tidal field. We also show that this result is intimately related to the presence of underlying non-linear symmetries. Our analysis generalizes previous findings for Schwarzschild black holes and confirms the robustness of four-dimensional black holes against tidal forces.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"67 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/03/002","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the tidal response of Kerr black holes in four-dimensional spacetimes subjected to external gravitational fields. Using the Ernst formalism and Weyl coordinates, we analyze the non-linear tidal deformation of rotating black holes and demonstrate that their static tidal Love numbers vanish at all orders of the external tidal field. We also show that this result is intimately related to the presence of underlying non-linear symmetries. Our analysis generalizes previous findings for Schwarzschild black holes and confirms the robustness of four-dimensional black holes against tidal forces.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.