Jiahua Huang, Weiwei Lin, Wentai Wu, Yang Wang, Haocheng Zhong, Xinhua Wang, Keqin Li
{"title":"On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey","authors":"Jiahua Huang, Weiwei Lin, Wentai Wu, Yang Wang, Haocheng Zhong, Xinhua Wang, Keqin Li","doi":"10.1145/3721427","DOIUrl":null,"url":null,"abstract":"The effective and efficient utilization of AI accelerators represents a critical issue for the practitioners engaged in the field of deep learning. Practical evidence from companies such as Alibaba, SenseTime, and Microsoft reveals that the utilization of production GPU clusters in the industry is generally between 25% and 50%. This indicates a significant opportunity for improvement. To this end, AI accelerator resource sharing has emerged as a promising approach to the performance optimization of multi-tenant clusters. This survey covers this line of studies from 2016 to 2024, focusing primarily on system efficiency while also including discussion on fairness, interference, and security in AI accelerator sharing. We revisit the fundamentals and key concepts, followed by a comprehensive review of recent advances in the field. We find that over 70% of the studies focus on efficiency improvement. We also observe that approximately half of the reviewed studies have made their source code publicly available, while fewer than one-third of the studies did not utilize a physical machine for experimentation. Finally, based on the limitations of existing research, we outline several directions for future research concerning the integration of sharing with large language models (LLMs), coordination between schedulers and application-layer metrics, and collaboration among heterogeneous accelerators.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"9 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3721427","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The effective and efficient utilization of AI accelerators represents a critical issue for the practitioners engaged in the field of deep learning. Practical evidence from companies such as Alibaba, SenseTime, and Microsoft reveals that the utilization of production GPU clusters in the industry is generally between 25% and 50%. This indicates a significant opportunity for improvement. To this end, AI accelerator resource sharing has emerged as a promising approach to the performance optimization of multi-tenant clusters. This survey covers this line of studies from 2016 to 2024, focusing primarily on system efficiency while also including discussion on fairness, interference, and security in AI accelerator sharing. We revisit the fundamentals and key concepts, followed by a comprehensive review of recent advances in the field. We find that over 70% of the studies focus on efficiency improvement. We also observe that approximately half of the reviewed studies have made their source code publicly available, while fewer than one-third of the studies did not utilize a physical machine for experimentation. Finally, based on the limitations of existing research, we outline several directions for future research concerning the integration of sharing with large language models (LLMs), coordination between schedulers and application-layer metrics, and collaboration among heterogeneous accelerators.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.