Notable challenges posed by long-read sequencing for the study of transcriptional diversity and genome annotation

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Carolina Monzó, Adam Frankish, Ana Conesa
{"title":"Notable challenges posed by long-read sequencing for the study of transcriptional diversity and genome annotation","authors":"Carolina Monzó, Adam Frankish, Ana Conesa","doi":"10.1101/gr.279865.124","DOIUrl":null,"url":null,"abstract":"Long-read sequencing (LRS) technologies have revolutionized transcriptomic research by enabling the comprehensive sequencing of full-length transcripts. Using these technologies, researchers have reported tens of thousands of novel transcripts, even in well-annotated genomes, while developing new algorithms and experimental approaches to handle the noisy data. The LRGASP community effort benchmarked LRS methods in transcriptomics and validated many novel, lowly-expressed, sample-specific transcripts identified by long reads. These molecules represent deviations of the major transcriptional program, that were easily overlooked by short-read sequencing methods but are now captured by the full-length, single-molecule approach. This Perspective discusses the challenges and opportunities associated with LRS' capacity to unravel this fraction of the transcriptome, both in terms of transcriptome biology and genome annotation. For transcriptome biology, we need to develop novel experimental and computational methods to effectively differentiate technology errors from rare but real molecules. For genome annotation, we must agree on the strategy to capture molecular variability while still defining reference annotations that are useful for genome research.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"23 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279865.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Long-read sequencing (LRS) technologies have revolutionized transcriptomic research by enabling the comprehensive sequencing of full-length transcripts. Using these technologies, researchers have reported tens of thousands of novel transcripts, even in well-annotated genomes, while developing new algorithms and experimental approaches to handle the noisy data. The LRGASP community effort benchmarked LRS methods in transcriptomics and validated many novel, lowly-expressed, sample-specific transcripts identified by long reads. These molecules represent deviations of the major transcriptional program, that were easily overlooked by short-read sequencing methods but are now captured by the full-length, single-molecule approach. This Perspective discusses the challenges and opportunities associated with LRS' capacity to unravel this fraction of the transcriptome, both in terms of transcriptome biology and genome annotation. For transcriptome biology, we need to develop novel experimental and computational methods to effectively differentiate technology errors from rare but real molecules. For genome annotation, we must agree on the strategy to capture molecular variability while still defining reference annotations that are useful for genome research.
长读测序对转录多样性和基因组注释的研究提出了显著的挑战
长读测序(LRS)技术通过实现全长转录物的全面测序,彻底改变了转录组学研究。利用这些技术,研究人员已经报告了数以万计的新转录本,甚至在有良好注释的基因组中,同时开发了新的算法和实验方法来处理嘈杂的数据。LRGASP社区的努力将LRS方法作为转录组学的基准,并验证了许多新的、低表达的、样本特异性的转录本。这些分子代表了主要转录程序的偏差,这些偏差很容易被短读测序方法所忽略,但现在被全长单分子方法所捕获。本展望从转录组生物学和基因组注释两方面讨论了与LRS解开这部分转录组的能力相关的挑战和机遇。对于转录组生物学,我们需要开发新的实验和计算方法来有效区分技术错误和罕见但真实的分子。对于基因组注释,我们必须就捕获分子变异性的策略达成一致,同时仍然定义对基因组研究有用的参考注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome research
Genome research 生物-生化与分子生物学
CiteScore
12.40
自引率
1.40%
发文量
140
审稿时长
6 months
期刊介绍: Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine. Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies. New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信