Deep learning-driven automated high-content dSTORM imaging with a scalable open-source toolkit.

IF 2.4 Q3 BIOPHYSICS
Janis T Linke, Luise Appeltshauser, Kathrin Doppler, Katrin G Heinze
{"title":"Deep learning-driven automated high-content dSTORM imaging with a scalable open-source toolkit.","authors":"Janis T Linke, Luise Appeltshauser, Kathrin Doppler, Katrin G Heinze","doi":"10.1016/j.bpr.2025.100201","DOIUrl":null,"url":null,"abstract":"<p><p>Super-resolution microscopy offers the ability to visualize molecular structures in biological samples with unprecedented detail. However, the full potential of these techniques is often hindered by a lack of automated, user-independent workflows. Here, we present an open-source toolkit that automates dSTORM super-resolution microscopy using deep learning for segmentation and object detection. This standalone program enables reliable segmentation of diverse biomedical images, even in low-contrast samples, surpassing existing solutions. Integrated into the imaging pipeline, it rapidly processes high-content data in minutes, reducing manual labor. Demonstrated by biological examples, such as microtubules in cell culture and the βII-spectrin in nerve fibers, our approach makes super-resolution imaging faster, more robust, and easy to use, even by nonexperts. This broadens its potential applications in biomedicine, including high-throughput experimentation.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100201"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2025.100201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Super-resolution microscopy offers the ability to visualize molecular structures in biological samples with unprecedented detail. However, the full potential of these techniques is often hindered by a lack of automated, user-independent workflows. Here, we present an open-source toolkit that automates dSTORM super-resolution microscopy using deep learning for segmentation and object detection. This standalone program enables reliable segmentation of diverse biomedical images, even in low-contrast samples, surpassing existing solutions. Integrated into the imaging pipeline, it rapidly processes high-content data in minutes, reducing manual labor. Demonstrated by biological examples, such as microtubules in cell culture and the βII-spectrin in nerve fibers, our approach makes super-resolution imaging faster, more robust, and easy to use, even by nonexperts. This broadens its potential applications in biomedicine, including high-throughput experimentation.

利用可扩展的开源工具包进行深度学习驱动的自动高内容 dSTORM 成像。
超分辨率显微镜能够以前所未有的细节观察生物样本中的分子结构。然而,由于缺乏独立于用户的自动化工作流程,这些技术潜力的充分发挥往往受到阻碍。在这里,我们介绍一种开源工具包,它利用深度学习进行分割和对象检测,实现了 dSTORM 超分辨率显微镜的自动化。这个独立的程序能够可靠地分割各种生物医学图像,即使是低对比度样本也不例外,超越了现有的解决方案。集成到成像流水线后,它能在几分钟内快速处理高内容数据,减少人工劳动。通过生物实例(如细胞培养中的微管和神经纤维中的βII-pectrin),我们的方法使超分辨率成像更快、更稳健、更易于使用,即使非专业人员也能轻松上手。这就拓宽了超分辨率成像在生物医学领域的潜在应用,包括高通量实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信