Nasal delivery of secretory IgA confers enhanced neutralizing activity against Omicron variants compared to its IgG counterpart.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Guanying Zhang, Ping Huang, Hongyu Yuan, Entao Li, Xiangyang Chi, Hancong Sun, Jin Han, Ting Fang, Yunzhu Dong, Jie Li, Yaoxing Wang, Jianmin Li, Sandra Chiu, Changming Yu
{"title":"Nasal delivery of secretory IgA confers enhanced neutralizing activity against Omicron variants compared to its IgG counterpart.","authors":"Guanying Zhang, Ping Huang, Hongyu Yuan, Entao Li, Xiangyang Chi, Hancong Sun, Jin Han, Ting Fang, Yunzhu Dong, Jie Li, Yaoxing Wang, Jianmin Li, Sandra Chiu, Changming Yu","doi":"10.1016/j.ymthe.2025.02.041","DOIUrl":null,"url":null,"abstract":"<p><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its multiple variants continue to spread worldwide, causing respiratory symptoms primarily through mucosal infection. The mucosa serves as the primary barrier against viral entry, in which secretory immunoglobulin A (sIgA) plays a critical role in preventing infection. Here, we engineered and characterized a neutralizing monoclonal antibody, ZW2G10, in IgG, monomeric, dimeric, secretory IgA1, and IgA2 formats. All seven forms of the ZW2G10 antibody showed similar thermal stability. sIgA, especially sIgA1, displayed enhanced neutralizing activity against Omicron-lineage BA.2.75, BA.2.76 and BA.4/5 pseudoviruses compared to IgG. Nasal administration of sIgA1 conferred robust protection against the BA.2.76 pseudovirus in ACE2 transgenic mice, and its protective efficacy was superior to that of IgG. The crystal structure of Omicron receptor binding domain (RBD) and ZW2G10 antibody fragment (Fab) complex revealed that ZW2G10 had no clashes with ACE2. Thus, nasal administration of sIgA may serve as a promising tool for the prevention and treatment of Omicron infection.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.02.041","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its multiple variants continue to spread worldwide, causing respiratory symptoms primarily through mucosal infection. The mucosa serves as the primary barrier against viral entry, in which secretory immunoglobulin A (sIgA) plays a critical role in preventing infection. Here, we engineered and characterized a neutralizing monoclonal antibody, ZW2G10, in IgG, monomeric, dimeric, secretory IgA1, and IgA2 formats. All seven forms of the ZW2G10 antibody showed similar thermal stability. sIgA, especially sIgA1, displayed enhanced neutralizing activity against Omicron-lineage BA.2.75, BA.2.76 and BA.4/5 pseudoviruses compared to IgG. Nasal administration of sIgA1 conferred robust protection against the BA.2.76 pseudovirus in ACE2 transgenic mice, and its protective efficacy was superior to that of IgG. The crystal structure of Omicron receptor binding domain (RBD) and ZW2G10 antibody fragment (Fab) complex revealed that ZW2G10 had no clashes with ACE2. Thus, nasal administration of sIgA may serve as a promising tool for the prevention and treatment of Omicron infection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信