Potential of connexin 32 as a predictive marker for drug-induced cholestatic liver injury in a collagen vitrigel-culture model of HepG2-NIAS cells, a new subline of HepG2 cells, with bile canaliculus-like structures.
{"title":"Potential of connexin 32 as a predictive marker for drug-induced cholestatic liver injury in a collagen vitrigel-culture model of HepG2-NIAS cells, a new subline of HepG2 cells, with bile canaliculus-like structures.","authors":"Miaki Uzu, Toshiaki Takezawa","doi":"10.2131/jts.50.135","DOIUrl":null,"url":null,"abstract":"<p><p>Cholestatic drug-induced liver injury (DILI) is caused by the aberrant excretion of bile acids (BAs) from hepatocytes via bile canaliculus-like structures (BCLSs) into the bile ducts. The precise in vitro evaluation method for cholestatic DILI has not been established due to a lack of specific markers and cell resources. We previously reported that HepG2-NIAS cells cultured on a collagen vitrigel (CV) membrane formed BCLSs with high protein expression of transporters involved in the excretion of BAs, including bile salt export pump (BSEP). In this study, the potential of connexin (Cx) 32, a component of gap junction, as a predictive marker for cholestatic DILI was investigated using a CV-culture model of HepG2-NIAS cells. The cells were treated with 7 drugs with different DILI-risk levels, and cell toxicity and Cx32 expression were evaluated. Cell toxicity was significantly increased not only by high DILI-risk drugs (troglitazone and cyclosporine A) but also by chlorpromazine with low DILI-risk. Furthermore, cell toxicity of troglitazone was not enhanced by a co-treatment with taurocholate, suggesting the low involvement of inhibition of BA excretion via BSEP in cholestatic DILI. In contrast, the total protein expression of Cx32 and co-localization of Cx32 and F-actin, which is composed of BCLSs, were significantly increased only by high DILI-risk drugs. Treatment with high DILI-risk drugs also induced the increased protein expression of zonula occludens (ZO)-1, which supports BCLSs concerted with Cx32. These results suggest that Cx32 expression in the CV-culture model of HepG2-NIAS cells may be a prominent predictive marker for cholestatic DILI.</p>","PeriodicalId":17654,"journal":{"name":"Journal of Toxicological Sciences","volume":"50 3","pages":"135-145"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2131/jts.50.135","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cholestatic drug-induced liver injury (DILI) is caused by the aberrant excretion of bile acids (BAs) from hepatocytes via bile canaliculus-like structures (BCLSs) into the bile ducts. The precise in vitro evaluation method for cholestatic DILI has not been established due to a lack of specific markers and cell resources. We previously reported that HepG2-NIAS cells cultured on a collagen vitrigel (CV) membrane formed BCLSs with high protein expression of transporters involved in the excretion of BAs, including bile salt export pump (BSEP). In this study, the potential of connexin (Cx) 32, a component of gap junction, as a predictive marker for cholestatic DILI was investigated using a CV-culture model of HepG2-NIAS cells. The cells were treated with 7 drugs with different DILI-risk levels, and cell toxicity and Cx32 expression were evaluated. Cell toxicity was significantly increased not only by high DILI-risk drugs (troglitazone and cyclosporine A) but also by chlorpromazine with low DILI-risk. Furthermore, cell toxicity of troglitazone was not enhanced by a co-treatment with taurocholate, suggesting the low involvement of inhibition of BA excretion via BSEP in cholestatic DILI. In contrast, the total protein expression of Cx32 and co-localization of Cx32 and F-actin, which is composed of BCLSs, were significantly increased only by high DILI-risk drugs. Treatment with high DILI-risk drugs also induced the increased protein expression of zonula occludens (ZO)-1, which supports BCLSs concerted with Cx32. These results suggest that Cx32 expression in the CV-culture model of HepG2-NIAS cells may be a prominent predictive marker for cholestatic DILI.
期刊介绍:
The Journal of Toxicological Sciences (J. Toxicol. Sci.) is a scientific journal that publishes research about the mechanisms and significance of the toxicity of substances, such as drugs, food additives, food contaminants and environmental pollutants. Papers on the toxicities and effects of extracts and mixtures containing unidentified compounds cannot be accepted as a general rule.