Male rat-specific fatty change in liver by DS-1971a: Elevation in phospholipids and adenosine as early responses to the fatty change in male rat-derived primary hepatocytes.
{"title":"Male rat-specific fatty change in liver by DS-1971a: Elevation in phospholipids and adenosine as early responses to the fatty change in male rat-derived primary hepatocytes.","authors":"Kazunori Fujimoto, Hiroyuki Kishino, Jun Hirao, Takanori Maejima, Kazuhiko Mori, Yoshimi Tsuchiya","doi":"10.2131/jts.50.125","DOIUrl":null,"url":null,"abstract":"<p><p>In a 3-month repeated oral dose toxicity study of DS-1971a, a selective inhibitor of the Nav1.7 voltage-gated sodium channel, fatty change of hepatocytes was observed only in male rats at doses of 100 mg/kg and above. However, this change was not observed in female rats even at the highest dose of 1500 mg/kg. Furthermore, fatty change was not observed in mice and monkeys administered the highest dose of 1000 mg/kg for 6 and 9 months, respectively. To further investigate species differences of this fatty change, lipid accumulation was evaluated by staining with the LipidTOX dye in primary cultured hepatocytes derived from male and female rats, male monkeys, and male and female humans. After exposure to DS-1971a for 72 hr, the staining showed an increase in intensity specifically in male rat-derived hepatocytes in a concentration-dependent manner. Metabolomic analysis using rat-derived primary cultured hepatocytes exposed to DS-1971a for 24 and 72 hr revealed that phospholipids, not neutral lipids like triacylglycerols, and adenosine were elevated in the male-derived hepatocytes. These results suggest that the elevation of phospholipids and adenosine in the hepatocytes may contribute to the specific fatty change observed in male rats.</p>","PeriodicalId":17654,"journal":{"name":"Journal of Toxicological Sciences","volume":"50 3","pages":"125-134"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2131/jts.50.125","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In a 3-month repeated oral dose toxicity study of DS-1971a, a selective inhibitor of the Nav1.7 voltage-gated sodium channel, fatty change of hepatocytes was observed only in male rats at doses of 100 mg/kg and above. However, this change was not observed in female rats even at the highest dose of 1500 mg/kg. Furthermore, fatty change was not observed in mice and monkeys administered the highest dose of 1000 mg/kg for 6 and 9 months, respectively. To further investigate species differences of this fatty change, lipid accumulation was evaluated by staining with the LipidTOX dye in primary cultured hepatocytes derived from male and female rats, male monkeys, and male and female humans. After exposure to DS-1971a for 72 hr, the staining showed an increase in intensity specifically in male rat-derived hepatocytes in a concentration-dependent manner. Metabolomic analysis using rat-derived primary cultured hepatocytes exposed to DS-1971a for 24 and 72 hr revealed that phospholipids, not neutral lipids like triacylglycerols, and adenosine were elevated in the male-derived hepatocytes. These results suggest that the elevation of phospholipids and adenosine in the hepatocytes may contribute to the specific fatty change observed in male rats.
期刊介绍:
The Journal of Toxicological Sciences (J. Toxicol. Sci.) is a scientific journal that publishes research about the mechanisms and significance of the toxicity of substances, such as drugs, food additives, food contaminants and environmental pollutants. Papers on the toxicities and effects of extracts and mixtures containing unidentified compounds cannot be accepted as a general rule.