Regulation of organic anion transporting polypeptide 1B1 transport function by concurrent phosphorylation and lysine-acetylation: A novel posttranslational regulation mechanism.

IF 3.2 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Molecular Pharmacology Pub Date : 2025-02-01 Epub Date: 2024-12-12 DOI:10.1016/j.molpha.2024.100007
Vishakha Tambe, Erik J Soderblom, Ruhul Kayesh, Vikram Aditya, Chao Xu, Wei Yue
{"title":"Regulation of organic anion transporting polypeptide 1B1 transport function by concurrent phosphorylation and lysine-acetylation: A novel posttranslational regulation mechanism.","authors":"Vishakha Tambe, Erik J Soderblom, Ruhul Kayesh, Vikram Aditya, Chao Xu, Wei Yue","doi":"10.1016/j.molpha.2024.100007","DOIUrl":null,"url":null,"abstract":"<p><p>Organic anion transporting polypeptide (OATP) 1B1 is crucial for hepatic uptake of many drugs and endogenous substrates. The clinically relevant OATP1B1 c.521 T>C (V174A) polymorphism exhibits reduced transport activity in vitro and in vivo in humans. Previously, we reported increased total phosphorylation of V174A-OATP1B1 compared to wild-type (WT)-OATP1B1, although the differentially phosphorylated sites remain to be identified. Lysine-acetylation, a key posttranslational modification (PTM), has not been investigated in OATP1B1. This study aimed to identify differential PTMs of WT-OATP1B1 and V174A-OATP1B1 by quantitatively comparing the relative abundance of modified peptides using liquid chromatography-tandem mass spectrometry-based proteomics and to assess the impact of these PTMs on OATP1B1 transport function using [<sup>3</sup>H]-estradiol-17-β-D-glucuronide as substrate in transporter-expressing human embryonic kidney 293 cells. We discovered that OATP1B1 is lysine-acetylated at 13 residues. Compared to WT-OATP1B1, V174A-OATP1B1 has increased concurrent phosphorylation at S659 and S663 and concurrent phosphorylation (at S659 and S663) and lysine-acetylation (at K650) (P < .05). Variants mimicking concurrent phosphorylation (S659E-S663E-OATP1B1) and concurrent phosphorylation and acetylation (K650Q-659E-S663E-OATP1B1) both demonstrated reduced substrate transport by 0.86 ± 0.055-fold and 0.65 ± 0.047-fold of WT-OATP1B1 (both P < .05), respectively. Single-site mimics of phosphorylation or lysine-acetylation at K650, S659, and S663 did not affect OATP1B1 transport function, indicating cooperative effects on OATP1B1 by concurrent PTMs. All variants and WT-OATP1B1 were primarily localized to the plasma membrane and colocalized with plasma membrane protein Na/K-ATPase as determined by immunofluorescent staining and confocal microscopy. The current study elucidates a novel mechanism in which concurrent serine-phosphorylation and lysine-acetylation impair OATP1B1-mediated transport, suggesting potential interplay between these PTMs in regulating OATP1B1. SIGNIFICANCE STATEMENT: Understanding organic anion transporting polypeptide (OATP1B1) regulation is key to predicting altered drug disposition. The Val174Ala-OATP1B1 polymorphism exhibits reduced transport activity and is the most effective predictor of statin-induced myopathy. Val174Ala-OATP1B1 was found to be associated with increased serine-phosphorylation at Ser659 and Ser663 and lysine-acetylation at Lys650; concurrent PTMs at these sites reduce OATP1B1 function. These findings revealed a novel mechanism involved in transporter regulation, suggesting potential interplay between these PTMs in governing hepatic drug transport and response.</p>","PeriodicalId":18767,"journal":{"name":"Molecular Pharmacology","volume":"107 2","pages":"100007"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934288/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molpha.2024.100007","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic anion transporting polypeptide (OATP) 1B1 is crucial for hepatic uptake of many drugs and endogenous substrates. The clinically relevant OATP1B1 c.521 T>C (V174A) polymorphism exhibits reduced transport activity in vitro and in vivo in humans. Previously, we reported increased total phosphorylation of V174A-OATP1B1 compared to wild-type (WT)-OATP1B1, although the differentially phosphorylated sites remain to be identified. Lysine-acetylation, a key posttranslational modification (PTM), has not been investigated in OATP1B1. This study aimed to identify differential PTMs of WT-OATP1B1 and V174A-OATP1B1 by quantitatively comparing the relative abundance of modified peptides using liquid chromatography-tandem mass spectrometry-based proteomics and to assess the impact of these PTMs on OATP1B1 transport function using [3H]-estradiol-17-β-D-glucuronide as substrate in transporter-expressing human embryonic kidney 293 cells. We discovered that OATP1B1 is lysine-acetylated at 13 residues. Compared to WT-OATP1B1, V174A-OATP1B1 has increased concurrent phosphorylation at S659 and S663 and concurrent phosphorylation (at S659 and S663) and lysine-acetylation (at K650) (P < .05). Variants mimicking concurrent phosphorylation (S659E-S663E-OATP1B1) and concurrent phosphorylation and acetylation (K650Q-659E-S663E-OATP1B1) both demonstrated reduced substrate transport by 0.86 ± 0.055-fold and 0.65 ± 0.047-fold of WT-OATP1B1 (both P < .05), respectively. Single-site mimics of phosphorylation or lysine-acetylation at K650, S659, and S663 did not affect OATP1B1 transport function, indicating cooperative effects on OATP1B1 by concurrent PTMs. All variants and WT-OATP1B1 were primarily localized to the plasma membrane and colocalized with plasma membrane protein Na/K-ATPase as determined by immunofluorescent staining and confocal microscopy. The current study elucidates a novel mechanism in which concurrent serine-phosphorylation and lysine-acetylation impair OATP1B1-mediated transport, suggesting potential interplay between these PTMs in regulating OATP1B1. SIGNIFICANCE STATEMENT: Understanding organic anion transporting polypeptide (OATP1B1) regulation is key to predicting altered drug disposition. The Val174Ala-OATP1B1 polymorphism exhibits reduced transport activity and is the most effective predictor of statin-induced myopathy. Val174Ala-OATP1B1 was found to be associated with increased serine-phosphorylation at Ser659 and Ser663 and lysine-acetylation at Lys650; concurrent PTMs at these sites reduce OATP1B1 function. These findings revealed a novel mechanism involved in transporter regulation, suggesting potential interplay between these PTMs in governing hepatic drug transport and response.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmacology
Molecular Pharmacology 医学-药学
CiteScore
7.20
自引率
2.80%
发文量
50
审稿时长
3-6 weeks
期刊介绍: Molecular Pharmacology publishes findings derived from the application of innovative structural biology, biochemistry, biophysics, physiology, genetics, and molecular biology to basic pharmacological problems that provide mechanistic insights that are broadly important for the fields of pharmacology and toxicology. Relevant topics include: Molecular Signaling / Mechanism of Drug Action Chemical Biology / Drug Discovery Structure of Drug-Receptor Complex Systems Analysis of Drug Action Drug Transport / Metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信