Revealing the key aromatic compounds in Malus ’Lollipop’ flowers by transcriptome and metabolome

IF 2.6 3区 生物学 Q2 GENETICS & HEREDITY
Gene Pub Date : 2025-02-27 DOI:10.1016/j.gene.2025.149371
Qin Peng , Limeng Zhou , Qingqing Xiong , Fangyuan Yu , Wangxiang Zhang , Junjun Fan
{"title":"Revealing the key aromatic compounds in Malus ’Lollipop’ flowers by transcriptome and metabolome","authors":"Qin Peng ,&nbsp;Limeng Zhou ,&nbsp;Qingqing Xiong ,&nbsp;Fangyuan Yu ,&nbsp;Wangxiang Zhang ,&nbsp;Junjun Fan","doi":"10.1016/j.gene.2025.149371","DOIUrl":null,"url":null,"abstract":"<div><div>The ornamental crabapple <em>Malus</em> (<em>M.</em>) ’Lollipop’ is renowned for its compact growth and fragrant flowers. This study aims to elucidate the biosynthesis molecular mechanism of volatile organic compounds (VOCs) across four developmental stages of the <em>M.</em> ’Lollipop’ flowers using metabolomics and transcriptomics analyses. Gas chromatography-mass spectrometry (GC–MS) identified 29 VOCs (aliphatic derivatives, benzenes, and alkanes) in <em>M.</em> ’Lollipop’ flowers. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) analysis highlights 14 key differential aromatic compounds (VIP ≥ 1), featuring (Z)-3-hexen-1-yl acetate in stage 1, methyl benzoate in stage 2, benzyl alcohol and linalool in stage 3, and camphene and (Z)-3-hexen-1-ol in stage 4. (Z)-3-hexen-1-yl acetate was identified as a co-primary constituent in the four flowering stages, designated as a key and floral contributing metabolite (variable importance in projection (VIP) ≥ 1&amp; odor activity value (OAV) ≥ 1). RNA sequencing revealed key genes including CAT, DXS, MVD, HMGCR, FDPS, and TPSc in camphene and linalool synthesis, aroA, ADT, PDT, PAL, BEBT1, SDR, 4CL, CNL, and BALDH for benzyl alcohol, benzaldehyde, and methyl benzoate production. And PLA2G, SPLA2, TGL4, LOX2S and ADH1 in (Z)-3-hexen-1-yl acetate and (Z)-3-hexen-1-ol synthesis. 24 transcription factors (TFs) were predicted to be closely linked to genes involved in VOC synthesis. The findings above deepen our comprehension of the floral scent in crabapple, laying a foundation for further investigations into their functions and potential industrial applications.</div></div>","PeriodicalId":12499,"journal":{"name":"Gene","volume":"951 ","pages":"Article 149371"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378111925001593","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The ornamental crabapple Malus (M.) ’Lollipop’ is renowned for its compact growth and fragrant flowers. This study aims to elucidate the biosynthesis molecular mechanism of volatile organic compounds (VOCs) across four developmental stages of the M. ’Lollipop’ flowers using metabolomics and transcriptomics analyses. Gas chromatography-mass spectrometry (GC–MS) identified 29 VOCs (aliphatic derivatives, benzenes, and alkanes) in M. ’Lollipop’ flowers. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) analysis highlights 14 key differential aromatic compounds (VIP ≥ 1), featuring (Z)-3-hexen-1-yl acetate in stage 1, methyl benzoate in stage 2, benzyl alcohol and linalool in stage 3, and camphene and (Z)-3-hexen-1-ol in stage 4. (Z)-3-hexen-1-yl acetate was identified as a co-primary constituent in the four flowering stages, designated as a key and floral contributing metabolite (variable importance in projection (VIP) ≥ 1& odor activity value (OAV) ≥ 1). RNA sequencing revealed key genes including CAT, DXS, MVD, HMGCR, FDPS, and TPSc in camphene and linalool synthesis, aroA, ADT, PDT, PAL, BEBT1, SDR, 4CL, CNL, and BALDH for benzyl alcohol, benzaldehyde, and methyl benzoate production. And PLA2G, SPLA2, TGL4, LOX2S and ADH1 in (Z)-3-hexen-1-yl acetate and (Z)-3-hexen-1-ol synthesis. 24 transcription factors (TFs) were predicted to be closely linked to genes involved in VOC synthesis. The findings above deepen our comprehension of the floral scent in crabapple, laying a foundation for further investigations into their functions and potential industrial applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gene
Gene 生物-遗传学
CiteScore
6.10
自引率
2.90%
发文量
718
审稿时长
42 days
期刊介绍: Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信