{"title":"[Drugs and cellular dynamics in tumor microenvironment using microphysiological systems].","authors":"Yuji Nashimoto","doi":"10.1254/fpj.24063","DOIUrl":null,"url":null,"abstract":"<p><p>The tumor microenvironment (TME) includes immune cells, cancer-associated fibroblasts (CAFs), endothelial cells, pericytes, and more. Previously, these non-cancer cells were considered inactive components in cancer pathology. However, it has become evident that these cells and their secretions play crucial roles in cancer progression. To unravel the complexity of the TME and elucidate its mechanisms, microphysiological systems (MPS) have gained attention. An MPS is defined as \"a microscale cell culture platform for in vitro modeling of functional features of a specific tissue or organ of human or animal origin\", allowing for the control of the chemical or physical conditions of the TME and the analysis of the responses of cancer cells and surrounding cells. In recent years, the incorporation of vascular networks into tumor MPS has enabled more accurate assessments of the dynamics within the TME. This review provides an overview of the latest research on cancer MPS with vascular networks and the cellular and molecular dynamics within the TME.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 2","pages":"97-101"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Pharmacologica Japonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1254/fpj.24063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The tumor microenvironment (TME) includes immune cells, cancer-associated fibroblasts (CAFs), endothelial cells, pericytes, and more. Previously, these non-cancer cells were considered inactive components in cancer pathology. However, it has become evident that these cells and their secretions play crucial roles in cancer progression. To unravel the complexity of the TME and elucidate its mechanisms, microphysiological systems (MPS) have gained attention. An MPS is defined as "a microscale cell culture platform for in vitro modeling of functional features of a specific tissue or organ of human or animal origin", allowing for the control of the chemical or physical conditions of the TME and the analysis of the responses of cancer cells and surrounding cells. In recent years, the incorporation of vascular networks into tumor MPS has enabled more accurate assessments of the dynamics within the TME. This review provides an overview of the latest research on cancer MPS with vascular networks and the cellular and molecular dynamics within the TME.