The crystal structures of apo and tryptophan-bound tryptophanyl-tRNA synthetase from Neisseria gonorrhoeae

IF 1.1 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Jessika Baral, David Song, Thomas E. Edwards, David M. Dranow, Donald D. Lorimer, Bart L. Staker, Peter Myler, Craig L. Smith
{"title":"The crystal structures of apo and tryptophan-bound tryptophanyl-tRNA synthetase from Neisseria gonorrhoeae","authors":"Jessika Baral,&nbsp;David Song,&nbsp;Thomas E. Edwards,&nbsp;David M. Dranow,&nbsp;Donald D. Lorimer,&nbsp;Bart L. Staker,&nbsp;Peter Myler,&nbsp;Craig L. Smith","doi":"10.1107/S2053230X25001311","DOIUrl":null,"url":null,"abstract":"<p><i>Neisseria gonorrhoeae</i>, the causative agent of the human disease gonorrhea, is the second most common sexually transmitted pathogen in the United States. Gonorrhea has a significantly high morbidity rate due to the ability of <i>N. gonorrhoeae</i> to rapidly develop antibiotic resistance. In this paper, crystal structures of tryptophanyl-tRNA synthetase (TrpRS) from <i>N. gonorrhoeae</i> (<i>Ng</i>TrpRS) were determined in both its apo form and in complex with tryptophan. The structures reveal conserved HIGH and KMSKS motifs critical for ATP binding and catalysis, and highlight conformational changes in the active site upon tryptophan binding, including a methionine flip and the rearrangement of hydrogen-bonding residues. Structural alignments with human TrpRS isoforms demonstrate significant differences between the bacterial and human cytosolic forms, particularly in their active sites. While <i>Ng</i>TrpRS and human mitochondrial TrpRS share conserved catalytic residues that are essential for binding tryptophan and indolmycin, the cytosolic TrpRS contains substitutions that introduce steric hindrance, limiting the binding of indolmycin. These results provide insight for the development of inhibitors targeting bacterial TrpRS without affecting the human mitochondrial or cytosolic isoforms, contributing to efforts to combat antibiotic-resistant <i>N. gonorrhoeae</i> infections.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":"81 4","pages":"130-137"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S2053230X25001311","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Neisseria gonorrhoeae, the causative agent of the human disease gonorrhea, is the second most common sexually transmitted pathogen in the United States. Gonorrhea has a significantly high morbidity rate due to the ability of N. gonorrhoeae to rapidly develop antibiotic resistance. In this paper, crystal structures of tryptophanyl-tRNA synthetase (TrpRS) from N. gonorrhoeae (NgTrpRS) were determined in both its apo form and in complex with tryptophan. The structures reveal conserved HIGH and KMSKS motifs critical for ATP binding and catalysis, and highlight conformational changes in the active site upon tryptophan binding, including a methionine flip and the rearrangement of hydrogen-bonding residues. Structural alignments with human TrpRS isoforms demonstrate significant differences between the bacterial and human cytosolic forms, particularly in their active sites. While NgTrpRS and human mitochondrial TrpRS share conserved catalytic residues that are essential for binding tryptophan and indolmycin, the cytosolic TrpRS contains substitutions that introduce steric hindrance, limiting the binding of indolmycin. These results provide insight for the development of inhibitors targeting bacterial TrpRS without affecting the human mitochondrial or cytosolic isoforms, contributing to efforts to combat antibiotic-resistant N. gonorrhoeae infections.

Abstract Image

淋病奈瑟菌载子和色氨酸结合色氨酸- trna合成酶的晶体结构。
淋病奈瑟菌是人类淋病的病原体,是美国第二常见的性传播病原体。由于淋病奈瑟菌能够迅速产生抗生素耐药性,淋病的发病率非常高。本文测定了淋病奈瑟菌色氨酸- trna合成酶(NgTrpRS)载子形式和与色氨酸配合物的晶体结构。这些结构揭示了对ATP结合和催化至关重要的保守的HIGH和KMSKS基序,并突出了色氨酸结合时活性位点的构象变化,包括甲硫氨酸翻转和氢键残基的重排。与人类trpr同种异构体的结构比对表明,细菌和人类胞质形式之间存在显著差异,特别是在其活性位点上。虽然ngtrpr和人类线粒体trpr共享结合色氨酸和吲哚霉素所必需的保守催化残基,但胞质trpr含有引入空间位阻的取代基,限制了吲哚霉素的结合。这些结果为开发不影响人类线粒体或细胞质同种异构体的靶向细菌trpr抑制剂提供了见解,有助于对抗耐抗生素淋病奈瑟菌感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta crystallographica. Section F, Structural biology communications
Acta crystallographica. Section F, Structural biology communications BIOCHEMICAL RESEARCH METHODSBIOCHEMISTRY &-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.90
自引率
0.00%
发文量
95
期刊介绍: Acta Crystallographica Section F is a rapid structural biology communications journal. Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal. The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles. Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信